Skip to main content

Biosynthesis and Assemblage of Extracellular Cellulose by Bacteria

  • Reference work entry
  • First Online:
Handbook of Environmental Materials Management
  • 64 Accesses

Abstract

This chapter reviews recent developments in research related to cellulose biosynthesis by bacteria. The chapter begins with a brief description on the structure of cellulose followed by a glimpse into ecological significance of cellulose production by symbiotic, pathogenic, and free-living bacteria. The biochemical pathway and enzymes leading to extracellular synthesis of cellulose have been discerned. Freeze fracture coupled to immuno-labeling techniques has established the existence of distinct cellulose synthesizing sites in bacteria, plants, and algae known as terminal complexes. Various types of arrangements of terminal complexes on cell surfaces which eventually determine the shape, dimensions, and crystallinity of cellulose have been discussed briefly. Structural, biochemical, and genetic characterization of bacterial cellulose synthase complex have revealed the presence of two core proteins, BscA and BscB, which are responsible for the polymerization of glucose units into glucan chains. BcsC and BscD are vital for the extracellular transport and crystallization of bacterial cellulose. Accessory proteins which regulate the catalytic activity of cellulose synthase, crystallization, and yield of bacterial cellulose have also been discovered. Four categories of bacterial cellulose synthase operons have been recognized in bacteria which encode proteins that participate in the synthesis, extracellular secretion, and crystallization of cellulose. Bioprocess parameters that impact quantity and quality of bacterial cellulose have been analyzed. An overview on applications of bacterial cellulose in food, biomedical devices, electronic products, and remediation of pollutants is also presented. This chapter concludes with thoughts on improving bacterial cellulose production through use of renewable resources and genetically engineered photosynthetic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6

    Article  CAS  Google Scholar 

  • Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473

    Article  CAS  Google Scholar 

  • Augimeri RV, Varley AJ, Strap JL (2015) Establishing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-producing proteobacteria. Front Microbiol 6:1282

    Google Scholar 

  • Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149

    Article  CAS  Google Scholar 

  • Bae SO, Sugano Y, Ohi K, Shoda M (2004) Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Appl Microbiol Biotechnol 65:315–322

    Article  CAS  Google Scholar 

  • Bassis CM, Visick KL (2010) The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J Bacteriol 192:1269–1278

    Article  CAS  Google Scholar 

  • Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. In: Steinbuchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry. Wiley-VCH Verlag, Weinheim, pp 31–85

    Google Scholar 

  • Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230:229–238

    Article  CAS  Google Scholar 

  • Brandl MT, Carter MQ, Parker CT, Chapman MR, Huynh S, Zhou Y (2011) Salmonella biofilm formation on Aspergillus niger involves cellulose–chitin interactions. PLoS One 6:e25553

    Article  CAS  Google Scholar 

  • Brown AJ (1886) XIX. The chemical action of pure cultivations of bacterium Aceti. J Chem Soc Trans 49:172–187

    Article  CAS  Google Scholar 

  • Brown RM Jr (1996) The biosynthesis of cellulose. J Macromol Sci Pure Appl Chem A33:1345–1373

    Article  CAS  Google Scholar 

  • Brown RM Jr (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci A Polym Chem 42:487–495

    Article  CAS  Google Scholar 

  • Brown RM Jr, Montezinos D (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci U S A 73:143–147

    Article  CAS  Google Scholar 

  • Brown RM Jr, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67

    Article  CAS  Google Scholar 

  • Brown C, Leijon F, Bulone V (2012) Radiometric and spectrophotometric in vitro assays of glycosyl-transferases involved in plant cell wall carbohydrate biosynthesis. Nat Protoc 7:1634–1650

    Article  CAS  Google Scholar 

  • Cakar F, Özer I, Aytekin AÖ, Sahin F (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym 106:7–13

    Article  CAS  Google Scholar 

  • Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active enZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(D):233–238

    Article  CAS  Google Scholar 

  • Capdevila JA, Bisbe V, Gasser I, Zuazu J, Olivé T, Fernández F et al (1998) Enterobacter amnigenus. An unusual human pathogen. Enferm Infecc Microbiol Clin 16:364–366

    CAS  Google Scholar 

  • Castro C, Zuluaga R, Alvarez C, Putax J-L, Caro G, Rojas OJ, Mondragon I, Ganan P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037

    Google Scholar 

  • Chau CF, Yang P, Yu CM, Yen GC (2008) Investigation on the lipid and cholesterol lowering abilities of biocellulose. J Agric Food Chem 56:2291–2295

    Article  CAS  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124

    CAS  Google Scholar 

  • Chen H, Brown RJ (1996) Immunochemical studies of the cellulose synthase complex in Acetobacter xylinum. Cellulose 3:63–75

    Article  Google Scholar 

  • Colvin JR (1957) Formation of cellulose microfibrils in a homogenate of Acetobacter xylinum. Arch Biochem Biophys 70:294–295

    Article  CAS  Google Scholar 

  • Costa AFS, Almeida FCG, Vinhas GM, Sarubbo LA (2017) Production of bacterial cellulose by Gluconoacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol 8:2027

    Article  Google Scholar 

  • Cotter PA, Stibitz S (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10:17–23

    Article  CAS  Google Scholar 

  • Coughlan MP, Mayer F (1992) The cellulose-decomposing bacteria and their enzyme systems. In Balows A, Trueper HG, Dworkin M, Harder W, Schleifer KH (eds), The prokaryotes: a handbook on the biology of bacteria, 2nd ed. Springer-Verlag, New York, USA, p 460–516

    Google Scholar 

  • Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A, Bandi C, Daffonchio D (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 76:6963–6970

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  CAS  Google Scholar 

  • Da Re S, Ghigo J (2006) A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J Bacteriol 188:3073–3087

    Article  CAS  Google Scholar 

  • Davenport A (2010) Membrane designs and composition for hemodialysis, hemofiltration and hemodialfiltration: past, present and future. Minerva Urol Nefrol 62:29–40

    CAS  Google Scholar 

  • Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893

    Article  CAS  Google Scholar 

  • Deinema MH, Zevenhui LPTM (1971) Formation of cellulose fibrils by Gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol 78:42–57

    Article  CAS  Google Scholar 

  • Deng Y, Nagachar N, Xiao C, Tien M, Kao T-H (2013) Identification and characterization of non-cellulose-producing mutants of Gluconacetobacter hansenii generated by Tn5 transposon mutagenesis. J Bacteriol 195:5072–5083

    Article  CAS  Google Scholar 

  • DeWulf P, Joris K, Vandamme EJ (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)gluconate synthesis. J Chem Technol Biotechnol 67:376–380

    Article  CAS  Google Scholar 

  • Eisele S, Ammon HPT, Kindervater R, Gröbe A, Göpel W (1994) Optimized biosensor for whole blood measurements using a new cellulose based membrane. Biosens Bioelectron 9:119–124

    Article  CAS  Google Scholar 

  • Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923

    Article  CAS  Google Scholar 

  • Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A, Galperin MY, Romling U, Gomelsky M (2014) GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol Microbiol 93:439–452

    Article  CAS  Google Scholar 

  • Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, Mora D, Scuppa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D (2007) Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci U S A 104:9047–9051

    Article  CAS  Google Scholar 

  • Fernandes SCM, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJD, Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297

    Article  CAS  Google Scholar 

  • Festucci-Buselli RA, Otoni WC, Joshi CP (2007) Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol 19:1–13

    Article  CAS  Google Scholar 

  • Fiedler S, Fussel M, Sattler K (1989) Production and application of bacterial cellulose: 1. A survey on state of research and investigations concerning fermentation kinetics. Zentralbl Mikrobiol 144:473–484

    Article  CAS  Google Scholar 

  • Galperin MY, Koonin EV (2012) Divergence and convergence in enzyme evolution. J Biol Chem 287:21–28

    Article  CAS  Google Scholar 

  • Garcia B, Latasa C, Solano C, Portillo FG, Gamazo C, Lasa I (2004) Role of GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 54:264–277

    Article  CAS  Google Scholar 

  • Goelzer F, Faria-Tischer PCS, Vitorino JC, Sierakowiski MR, Tischer CA (2009) Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinus from processed rice bark. J Mater Sci Eng C 29:546–551

    Article  CAS  Google Scholar 

  • Gomes FP, Silva NHCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, Neto CP, Freire CSR (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. J Biomass Bioenergy 55:205–211

    Article  CAS  Google Scholar 

  • Gray MC, Converse AO, Wyman CE (2003) Sugar monomer and oligomer solubility: data and predictions for application to biomass hydrolysis. Appl Biochem Biotechnol 105–108:179–193

    Article  Google Scholar 

  • Haigler CH (1985) The functions and biogenesis of native cellulose. In: Nevell RP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood Ltd., Chichester, UK, pp 30–83

    Google Scholar 

  • Haigler CH, Brown RM Jr (1986) Transport of rosettes from golgi apparatus to plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134:111–120

    Article  Google Scholar 

  • Hasan N, Biak DRA, Kamarudin S (2012) Application of bacterial cellulose (BC) in natural facial scrub. Int J Adv Sci Eng Inf Technol 2:1–4

    Article  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352

    Article  CAS  Google Scholar 

  • Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72:545–549

    Article  CAS  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5: 45

    Google Scholar 

  • Hornung M, Ludwig M, Schmauder HP (2007) Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (Part 3). Eng Life Sci 7:35–41

    Article  CAS  Google Scholar 

  • Hu S-Q, Gao Y-G, Tajima K, Sunagawa N, Zhou Y, Kawano S, Fujiwara T, Yoda T, Shimura D, Satoh Y, Munekata M, Tanaka I, Yao M (2010) Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proc Natl Acad Sci U S A 107:17957–17961

    Article  Google Scholar 

  • Hungund BS, Gupta SG (2010) Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2. J Microb Biochem Technol 2:127–133

    Article  CAS  Google Scholar 

  • Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88:183–188

    Article  CAS  Google Scholar 

  • Ishida T, Sugano Y, Nakai T, Shoda M (2002) Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Biosci Biotechnol Biochem 66:1677–1681

    Article  CAS  Google Scholar 

  • Itävaara M, Siika-aho M, Viikari L (1999) J Polym Environ 7: 67–73

    Google Scholar 

  • Itoh T, Kimura S, Brown RM Jr (2007) Immunogold labeling of cellulose-synthesizing terminal complexes, chapter 14. In: Brown RM Jr, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 237–256

    Chapter  Google Scholar 

  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401

    Article  CAS  Google Scholar 

  • Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production-a literature review. J Clean Prod 42:228–240

    Article  CAS  Google Scholar 

  • Jeihanipour A, Taherzadeh M (2009) Ethanol production from cotton-based waste textiles. Bioresour Technol 100:1007–1010

    Article  CAS  Google Scholar 

  • Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT Food Sci Technol 47:400–406

    Article  CAS  Google Scholar 

  • Johnson DC, Neogi AN (1989) Sheeted products formed from reticulated microbial cellulose. US patent 4863565, Weyerhaeuser Company

    Google Scholar 

  • Jones DM, Murray CM, Ketelaar KJ, Thomas JJ, Villalobos JA, Wallace IS (2016) The emerging role of protein phosphorylation as a critical regulatory mechanism controlling cellulose biosynthesis. Front Plant Sci 7:684–695

    Google Scholar 

  • Kawano Y, Saotome T, Ochiai Y, Katayama M, Narikawa R, Ikeuchi M (2011) Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol 52:957–966

    Article  CAS  Google Scholar 

  • Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:150–159

    Article  CAS  Google Scholar 

  • Kim J, Cai Z, Lee HS, Choi GS, Lee DE, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744

    Article  CAS  Google Scholar 

  • Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2086

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Knott BC, Crowley MF, Himmal ME, Zimmer J, Beckham GT (2016) Simulations of cellulose translocation in the bacterial cellulose synthase suggest a regulatory for the dimeric structure of cellulose. Chem Sci 7:3108–3116

    Article  CAS  Google Scholar 

  • Koo HM, Song SH, Pyun YR, Kim YS (1998) Evidence that a β-1,4-endoglucanase secreted by Acetobacter xylinum plays an essential role for the formation of cellulose fiber. Biosci Biotechnol Biochem 62:2257–2259

    Article  CAS  Google Scholar 

  • Kounatidis I, Crotti E, Sapountzis P, Sacchi L, Rizzi A, Chouaia B, Bandi C, Alma A (2009) Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl Environ Microbiol 75:3281–3288

    Article  CAS  Google Scholar 

  • Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci U S A 94:9091–9095

    Article  CAS  Google Scholar 

  • Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing – HoLiR concept. Biotechnol Bioeng 105:740–747

    CAS  Google Scholar 

  • Krupicka M, Tvaroska I (2009) Hybrid quantum mechanical/molecular mechanical investigation of the β-1,4-galactosyltransferase-I mechanism. J Phys Chem B 113:11314–11319

    Article  CAS  Google Scholar 

  • Kuga S, Brown RM Jr (1988) Silver labeling of the reducing ends of bacterial cellulose. Carbohydr Res 180:345–350

    Article  CAS  Google Scholar 

  • Lai-Kee-Him J, Chanzy H, Müller M, Putaux JL, Imai T, Bulone V (2002) In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem 277:36931–36939

    Article  CAS  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  Google Scholar 

  • Lapidot A, Yaron S (2009) Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J Food Prot 72:618–623

    Article  Google Scholar 

  • Le Quéré B, Ghigo J-M (2009) BcsQ is an essential component of the Escherichia coli cellulose biosynthesis apparatus that localizes at the bacterial cell pole. Mol Microbiol 72:724–740

    Article  CAS  Google Scholar 

  • Lee K-A, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing and applications in advanced fiber composites. Macromol Biosci 14:10–32

    Article  CAS  Google Scholar 

  • Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA, Kreichman GS, Turkovskii II, Gumenyuk ES, Karnovich AG, Khripunov AK (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138:311–315

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119

    Article  CAS  Google Scholar 

  • Lin FC, Brown RM Jr (1989) Purification of cellulose synthase from Acetobacter xylinum. In: Schuerch C (ed) Cellulose and wood: chemistry and technology. Wiley, New York, pp 473–492

    Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • Lin FC, Brown RM Jr, Drake RR Jr, Haley BE (1990) Identification of the uridine 5′-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. J Biol Chem 265:4782–4784

    CAS  Google Scholar 

  • Lin SB, Chen LC, Chen HH (2011) Physical characteristics of surimi and bacterial cellulose composite gel. J Food Process Eng 34:1363–1379

    Article  CAS  Google Scholar 

  • Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    Article  CAS  Google Scholar 

  • Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119

    Article  CAS  Google Scholar 

  • Matsuoka M, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem 60:575–579

    Article  CAS  Google Scholar 

  • Matthysse AG, Holmes KV, Gurlitz RHG (1981) Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145:583–595

    CAS  Google Scholar 

  • Matthysse AG, Thomas DL, White AR (1995a) Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1076–1081

    Article  CAS  Google Scholar 

  • Matthysse AG, White S, Lightfoot R (1995b) Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1069–1075

    Article  CAS  Google Scholar 

  • Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C et al (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant-Microbe Interact 18:1002–1010

    Article  CAS  Google Scholar 

  • McNamara JT, Morgan JLW, Zimmer JA (2015) Molecular description of cellulose biosynthesis. Annu Rev Biochem 84:895–921

    Article  CAS  Google Scholar 

  • Mehta K, Pfeffer S, Brown RM Jr (2015) Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus. Cellulose 22:119–137

    Article  CAS  Google Scholar 

  • Mello LR, Feltrin LT, Neto FPT, Ferraz FAP (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86:143–150

    Article  CAS  Google Scholar 

  • Mizrachi E, Mansfield SD, Myburg AA (2012) Cellulose factories: advancing bioenergy production from forest trees. New Phytol 194:54–62

    Article  CAS  Google Scholar 

  • Mohammad SM, Rahman NA, Khalil MS, Abdullah SRS (2014) An overview of biocellulose production using Acetobacter xylinum culture. Adv Biol Res 8:307–313

    Google Scholar 

  • Mohammadkazemi F, Doosthoseini K, Azin M (2015) Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734) Cellulose. Chem Technol 49:455–462

    CAS  Google Scholar 

  • Moniri M, Moghaddam AB, Azizi S, Rahim RA, Ariff AB, Saas WZ, Navaderi M, Mohamad R (2017) Production and status of bacterial cellulose in biomedical engineering. Nano 7:257–282

    Google Scholar 

  • Morgan JLW, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186

    Article  CAS  Google Scholar 

  • Morgan JLW, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21:489–496

    Article  CAS  Google Scholar 

  • Morgan JLW, McNamara JT, Fischer M, Rich J, Chen HM, Withers SG, Zimmer J (2016) Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531:329–334

    Article  CAS  Google Scholar 

  • Newman RH, Hill SJ, Harris PJ (2013) Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567

    Article  CAS  Google Scholar 

  • Niaounakis M (2015) Biopolymers Processing and Products, Elsevier, 225 Wyman street, Waltham, MA 02451, USA

    Google Scholar 

  • Nimeskern L, Avila HM, Sundberg J, Gatenholm P, Muller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21

    Article  CAS  Google Scholar 

  • Nobles DR, Brown RM Jr (2008) Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellulose 15:691–701

    Article  CAS  Google Scholar 

  • Nobles DR, Romanovicz DK, Brown RM Jr (2001) Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127:529–542

    Article  CAS  Google Scholar 

  • Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852

    Article  CAS  Google Scholar 

  • Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H (2006) Fiber-content dependency of the optically transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88:133124:1–133124:3

    Article  CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Okuda K, Sekida S (2007) Cellulose–synthesizing complexes of a dinoflagellate and other unique algae, chapter 12. In: Brown RM Jr, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 199–216

    Chapter  Google Scholar 

  • Olsson RT, Samir MASA, Alvarez GS, Belova L, Strom V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588

    Article  CAS  Google Scholar 

  • Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci U S A 110:17856–17861

    Article  Google Scholar 

  • Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25:2055–2059

    Article  CAS  Google Scholar 

  • Patel UD, Suresh S (2008) Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. J Colloid Interface Sci 319:462–469

    Article  CAS  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  CAS  Google Scholar 

  • Pérez CD, De’Nobili MD, Rizzo SA, Gerschenson LN, Descalzo AM, Rojas AM (2013) High methoxyl pectin–methyl cellulose films with antioxidant activity at a functional food interface. J Food Eng 116:162–169

    Article  CAS  Google Scholar 

  • Pérez-Mendoza D, Aragón IM, Prada-Ramírez HA, Romero-Jiménez L, Ramos C, Gallegos M-T, Sanjuan J (2014) Responses to elevated c-di-GMP levels in mutualistic and pathogenic plant-interacting bacteria. PLoS One 9:e91645

    Article  CAS  Google Scholar 

  • Persin Z, Maver U, Pivec T, Maver T, Vesel A, Mozitec M, Stana-Kleinschek K (2014) Novel cellulose based materials for safe and efficient wound treatment. Carbohydr Polym 100:55–64

    Article  CAS  Google Scholar 

  • Rani MU, Appaiah KA (2013) Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J Food Sci Technol 50:755–762

    Article  CAS  Google Scholar 

  • Raymond L, Revol J-F, Ryan DH, Marchessault RH (1994) In situ synthesis of ferrites in cellulosics. Chem Mater 6:249–255

    Article  CAS  Google Scholar 

  • Raymond L, Revol J-F, Marchessault RH, Ryan DH (1995) In situ synthesis of ferrites in ionic and neutral cellulose gels. Polymer 36:5035–5043

    Article  CAS  Google Scholar 

  • Roberts EM, Hardison LK, Brown RM Jr (1986) Production of microbial cellulose. European Patent No. 0186495

    Google Scholar 

  • Robledo M, Rivera L, Jiménez-Zurdo JI, Rivas R, Dazzo F, Velázquez E, Martínez-Molina E, Hirsch AM, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11:125

    Article  CAS  Google Scholar 

  • Rodríguez A, Sánchez R, Requejo A, Ferrer A (2010) Feasibility of rice straw as a raw material for the production of soda cellulose pulp. J Clean Prod 18:1084–1091

    Article  CAS  Google Scholar 

  • Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212

    Article  Google Scholar 

  • Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions. Trends Microbiol 9:545–557

    Article  CAS  Google Scholar 

  • Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52

    Article  CAS  Google Scholar 

  • Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–282

    Article  CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    CAS  Google Scholar 

  • Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89:613–622

    Article  CAS  Google Scholar 

  • Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:1–8, Article ID 175362

    Article  CAS  Google Scholar 

  • Saska S, Caminaga RMS, Teixeira LN, Franchi LP, Santos RAD, Gaspar AMM, Oliveira PTD, Rosa AL, Takahashi CS, Messaddeq Y, Ribeiro SJL, Marchetto R (2012) Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci Mater Med 23:2253–2266

    Article  CAS  Google Scholar 

  • Saxena IM, Brown RM Jr (2012) Biosynthesis of bacterial cellulose. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose: a sophisticated multifunctional material. CRC press, Taylor and Francis Group, Boca Raton, pp 1–18

    Google Scholar 

  • Saxena IM, Kudlicka K, Okuda K, Brown RM Jr (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176:5735–5752

    Article  CAS  Google Scholar 

  • Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology 11:123–129

    CAS  Google Scholar 

  • Shao W, Liu H, Liu X, Wang S, Zhang R (2015) Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Adv 5:4795–4803

    Article  CAS  Google Scholar 

  • Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose. Carbohydr Polym 75:110–114

    Article  CAS  Google Scholar 

  • Shibazaki H, Kuga S, Onabe F, Brown RM Jr (1995) Acid hydrolysis behaviour of microbial cellulose II. Polymer 36:4971–4976

    Article  CAS  Google Scholar 

  • Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, Kida K (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng 99:415–422

    Article  CAS  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8

    Article  CAS  Google Scholar 

  • Silva NHCS, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Silvestre AJD, Freire CSR (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 106:264–269

    Article  CAS  Google Scholar 

  • Small AC, Johnston JH (2009) Novel hybrid materials of magnetic nanoparticles and cellulose fibers. J Colloid Interface Sci 331:122–126

    Article  CAS  Google Scholar 

  • Solano C, García B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I (2002) Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808

    Article  CAS  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  Google Scholar 

  • Son HJ, Heo MS, Kim YG, Lee SJ (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol Appl Biochem 33(Part 1):1–5

    Article  CAS  Google Scholar 

  • Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ (2003) Increased production of bacterial cellulose by Acetobacter sp. V9 in synthetic media under shaking culture conditions. Bioresour Technol 86:215–219

    Article  Google Scholar 

  • Sourty E, Ryan DH, Marchessault RH (1998) Characterization of magnetic membranes based on bacterial and man-made cellulose. Cellulose 5:5–17

    Article  CAS  Google Scholar 

  • Standal R, Iversen TG, Coucheron DH, Fjaervik E, Blatny JM, Valla S (1994) A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. J Bacteriol 176:665–672

    Article  CAS  Google Scholar 

  • Sun D, Yang J, Wang X (2010a) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2:287–292

    Article  CAS  Google Scholar 

  • Sun D, Yang J, Li J, Yu J, Xu X, Yang X (2010b) Novel Pd–Cu/bacterial cellulose nanofibers: preparation and excellent performance in catalytic denitrification. Appl Surf Sci 256:2241–2244

    Article  CAS  Google Scholar 

  • Sunagawa N, Tajima K, Hosoda M, Kawano S, Kose R, Satoh Y, Yao M, Dairi T (2012) Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis. Cellulose 19:1989–2001

    Article  CAS  Google Scholar 

  • Sunagawa N, Fujiwara T, Yoda T, Kawano S, Satoh Y, Yao M, Tajima K, Dairi T (2013) Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum. J Biosci Bioeng 115:607–612

    Article  CAS  Google Scholar 

  • Suppakul P, Jutakorn K, Bangchokedee Y (2010) Efficacy of cellulose-based coating on enhancing the shelf life of fresh eggs. J Food Eng 98:207–213

    Article  CAS  Google Scholar 

  • Suresh S, Hung Y-T (2006) Treatment of pulp and paper mill wastes, Chapter 10. In: Wang LK, Hung Y-T, Lo HH, Yapijakis C (eds) Waste treatment in the process industries. CRC press, Taylor and Francis Group, Boca Raton, pp 453–497

    Google Scholar 

  • Sureshkumar M, Siswanto DY, Lee CK (2010) Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 20:6948–6955

    Article  CAS  Google Scholar 

  • Sykes LC, Matthysse AG (1986) Time required for tumor induction by Agrobacterium tumefaciens. Appl Environ Microbiol 52:597–599

    CAS  Google Scholar 

  • Tonouchi N, Tahara N, Tsuchida T, Yoshinaga F, Beppu T (1995) Addition of a small amount of an endoglucanase enhances cellulose production by Acetobacter xylinum. Biosci Biotechnol Biochem 59:805–808

    Article  CAS  Google Scholar 

  • Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose producing Acetobacter strains suitable for agitated culture. J Biosci Biotech Biochem 59:1498–1502

    Article  CAS  Google Scholar 

  • Trovatti E, Silva NHCS, Duarte IF, Rosado CF, Almeida IF, Costa P, Freire CSR, Silvestre AJD, Neto CP (2011) Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 12:4162–4168

    Article  CAS  Google Scholar 

  • Trovatti E, Freire CSR, Pinto PC, Almeidac IF, Costa P, Silvestre AJD, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87

    Article  CAS  Google Scholar 

  • Tyagi N (2016) Production of extracellular cellulose from molasses by Gluconoacetobacter intermedius SNT-1: optimization of growth medium conditions, characterization and environmental application. PhD thesis, Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai

    Google Scholar 

  • Tyagi N, Suresh S (2013) Isolation and characterization of cellulose producing bacterial strain from orange pulp. Adv Mater Res 626:475–479

    Article  CAS  Google Scholar 

  • Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter: optimization and characterization. J Clean Prod 112:71–80

    Article  CAS  Google Scholar 

  • UI-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2014) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21:433–447

    Article  CAS  Google Scholar 

  • Valla S, Coucheron DH, Fjaervik E, Kjosbakken J, Weinhouse H, Ross P, Amikam D, Benziman M (1989) Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose-negative mutants by the UDPG pyrophosphorylase structural gene. Mol Gen Genet 217:26–30

    Article  CAS  Google Scholar 

  • Vargas F, Gonzalez Z, Sanchez R, Jimenez L, Rodriguez A (2012) Cellulosic pulps of cereal straws as raw material for the manufacture of ecological packaging. Bioresources 7:4161–4170

    Google Scholar 

  • Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554

    Article  CAS  Google Scholar 

  • Vyjayanthi JP, Suresh S (2010) Decolourization of drimarene red dye using palladized bacterial cellulose in a reactor. Water Environ Res 82:601–609

    Article  CAS  Google Scholar 

  • Vyjayanthi JP, Suresh S (2016) Dechlorination of DDT and its products using palladized bacterial cellulose in a reactor. In: Sorail GA, Hong J (eds) Environmental science and technology, vol 2. American Science Press, Houston, pp 259–265

    Google Scholar 

  • Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832

    Article  CAS  Google Scholar 

  • Wang J, Wan Y, Huang Y (2012) Immobilization of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique. IET Nanobiotechnol 6:52–57

    Article  CAS  Google Scholar 

  • Whitney JC, Howell PL (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21:63–72

    Article  CAS  Google Scholar 

  • World Health Organ (WHO) (2012) Evaluation of certain food additives: seventy-sixth report of the joint FAO/WHO expert committee on food additives. FAO/WHO, Geneva, p 183

    Google Scholar 

  • Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771

    Article  CAS  Google Scholar 

  • Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly (lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22:15732–15739

    Article  CAS  Google Scholar 

  • Xu J, Kim J, Koestler BJ, Choi J-H, Waters CM, Fuqua C (2013) Genetic analysis of Agrobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile-to-sessile switch. Mol Microbiol 89:929–948

    Article  CAS  Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145

    Article  CAS  Google Scholar 

  • Yamanaka S, Ono E, Watanabe K, Kusakabe M, Suzuki Y (1990) Hollow microbial cellulose, process for preparation thereof, and artificial blood vessel formed of said cellulose. European Patent No. 0396344

    Google Scholar 

  • Yang J, Sun D, Li J, Yang X, Yu J, Hao Q, Liu W, Liu J, Zou Z, Gu J (2009) In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim Acta 54:6300–6305

    Article  CAS  Google Scholar 

  • Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845

    Article  CAS  Google Scholar 

  • Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284

    Article  CAS  Google Scholar 

  • Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotech Biochem 61:219–224

    Article  CAS  Google Scholar 

  • Yu WD, Lin WR, Shao XF, Hu ZX, Li RC, Yuan DS (2014) High performance supercapacitor based on Ni3S2/carbon nanofibres and carbon nanofibers electrodes derived from bacterial cellulose. J Power Sources 272:137–143

    Article  CAS  Google Scholar 

  • Yunoki S, Osada Y, Kono H, Takai H (2004) Role of ethanol in improvement of bacterial cellulose production: analysis using 13C-labeled carbon sources. Food Sci Technol Res 10:307–313

    Article  CAS  Google Scholar 

  • Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X, Qiu G, Wu Z, Yang G (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C Mater Biol Appl 46:111–117

    Article  CAS  Google Scholar 

  • Zhao Q, Zhao M, Li J, Yang B, Su G, Cui C, Jiang Y (2009) Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped cream. Food Hydrocoll 23:2168–2173

    Article  CAS  Google Scholar 

  • Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483–489

    Article  CAS  Google Scholar 

  • Zhu H, Jia S, Yang H, Tang W, Jia Y, Tan Z (2010) Characterization of bacteriostatic sausage casing: a composite of bacterial cellulose embedded with ε-polylysine. Food Sci Biotechnol 19:1479–1484

    Article  CAS  Google Scholar 

  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:452–463

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Suresh, S. (2019). Biosynthesis and Assemblage of Extracellular Cellulose by Bacteria. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-73645-7_71

Download citation

Publish with us

Policies and ethics