Skip to main content

New Generation Ceramic Coatings for High-Temperature Applications by Liquid Feedstock Plasma Spraying

  • Living reference work entry
  • First Online:
  • 374 Accesses

Abstract

Plasma spraying with liquid feedstock offers an exciting opportunity to obtain coatings with characteristics that are vastly different from those produced using conventional spray-grade powders. The two extensively investigated variants of this technique are suspension plasma spraying (SPS), which utilizes a suspension of fine powders in an appropriate medium, and solution precursor plasma spraying (SPPS), which involves use of a suitable solution precursor that can form the desired particles in situ. The advent of axial injection plasma spray systems in recent times has also eliminated concerns regarding low deposition rates/efficiencies associated with liquid feedstock. The 10–100 μm size particles that constitute conventional spray powders lead to individual splats that are more than an order of magnitude larger compared to those resulting from the fine (approximately 100 nm–2 μm in size) particles already present in suspensions in SPS or formed in situ in SPPS. The distinct characteristics of the resulting coatings are directly attributable to the above very dissimilar splats (“building blocks” for coatings) responsible for their formation. This chapter discusses the salient features associated with SPS and SPPS processing, highlights their versatility for depositing a vast range of ceramic coatings with diverse functional attributes, and discusses their utility, particularly for high-temperature applications through some illustrative examples. A further extension of liquid feedstock plasma processing to enable use of hybrid powder-liquid combinations for plasma spraying is also discussed. This presents a novel approach to explore new material combinations, create various function-dependent coating architectures with multi-scale features, and enable convenient realization of layered, composite, and graded coatings as demonstrated through specific examples.

This is a preview of subscription content, log in via an institution.

References

  1. Pawlowski L (1995) The science and engineering of thermal spray coatings. Wiley, Chichester/New York

    Google Scholar 

  2. Schneider KE, Belashchenko V, Dratwinski M, Siegmann S, Zagorski A (2006) Thermal spraying for power generation components. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  3. Markocsan N, Gupta M, Joshi S, Nylén P, Li XH, Wigren J (2017) Liquid feedstock plasma spraying: an emerging process for advanced thermal barrier coatings. J Therm Spray Technol 26(6):1104–1114. Springer New York LLC

    Article  CAS  Google Scholar 

  4. Fauchais P, Etchart-Salas R, Rat V, Coudert JF, Caron N, Wittmann-Ténèze K (2008) Parameters controlling liquid plasma spraying: solutions, sols, or suspensions. J Therm Spray Technol 17(1):31–59

    Article  CAS  Google Scholar 

  5. Karthikeyan J, Berndt CC, Reddy S, Wang J-Y, King AH, Herman H (2005) Nanomaterial deposits formed by DC plasma spraying of liquid feedstocks. J Am Ceram Soc 81(1):121–128

    Article  Google Scholar 

  6. Pawlowski L (2009) Suspension and solution thermal spray coatings. Surf Coat Technol 203(19):2807–2829

    Article  CAS  Google Scholar 

  7. Lima RS, Marple BR (2007) Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J Therm Spray Technol 16(1):40–63

    Article  CAS  Google Scholar 

  8. Qiao Y, Fischer TE, Dent A (2003) The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC-Co coatings with very fine structures. Surf Coat Technol 172(1):24–41

    Article  CAS  Google Scholar 

  9. Govindarajan S, Dusane RO, Joshi SV (2011) In situ particle generation and splat formation during solution precursor plasma spraying of Yttria-stabilized zirconia coatings. J Am Ceram Soc 94(12):4191–4199

    Article  CAS  Google Scholar 

  10. Mahade S, Narayan K, Govindarajan S, Björklund S, Curry N, Joshi S (2019) Exploiting suspension plasma spraying to deposit wear-resistant carbide coatings. Materials 12(15):2344

    Article  CAS  Google Scholar 

  11. Fauchais P et al (2013) Suspension and solution plasma spraying. J Phys D Appl Phys 46(22)

    Article  CAS  Google Scholar 

  12. Fauchais P, Montavon G, Lima RS, Marple BR (2011) Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D Appl Phys 44(9):093001

    Article  CAS  Google Scholar 

  13. Fauchais P, Montavon G (2010) Latest developments in suspension and liquid precursor thermal spraying. J Therm Spray Technol 19(1–2):226–239

    Article  Google Scholar 

  14. Tesar T, Musalek R, Medricky J, Cizek J (2019) On growth of suspension plasma-sprayed coatings deposited by high-enthalpy plasma torch. Surf Coat Technol 371:333–343

    Article  CAS  Google Scholar 

  15. Zhou D, Guillon O, Vaßen R (2017) Development of YSZ thermal barrier coatings using axial suspension plasma spraying. Coatings 7(8):120

    Article  CAS  Google Scholar 

  16. Bai M, Maher H, Pala Z, Hussain T (2018) Microstructure and phase stability of suspension high velocity oxy-fuel sprayed yttria stabilised zirconia coatings from aqueous and ethanol based suspensions. J Eur Ceram Soc 38(4):1878–1887

    Article  CAS  Google Scholar 

  17. Karthikeyan J, Berndt CC, Tikkanen J, Wang JY, King AH, Herman H (1997) Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors. Nanostructured Mater 8(1):61–74

    Article  CAS  Google Scholar 

  18. Gell M et al (2008) Thermal barrier coatings made by the solution precursor plasma spray process. J Therm Spray Technol 17(1):124–135

    Article  CAS  Google Scholar 

  19. Coyle TW, Wang Y (2007) Solution precursor plasma spray (SPPS) of Ni-YSZ SOFC anode coatings. In: Thermal spray 2007: global coating solutions, pp 699–704

    Google Scholar 

  20. Jordan EH, Gell M, Jiang C, Wang J, Nair B (2014) High temperature thermal barrier coating made by the solution precursor plasma spray process. In: Volume 6: ceramics; controls, diagnostics and instrumentation; education; manufacturing materials and metallurgy

    Google Scholar 

  21. Lohia A, Sivakumar G, Ramakrishna M, Joshi SV (2014) Deposition of nanocomposite coatings employing a hybrid APS + SPPS technique. J Therm Spray Technol 23:1054–1064

    Article  CAS  Google Scholar 

  22. Karthikeyan J, Berndt CC, Tikkanen J, Reddy S, Herman H (1997) Plasma spray synthesis of nanomaterial powders and deposits. Mater Sci Eng A 238(2):275–286

    Article  Google Scholar 

  23. Padture NP et al (2001) Towards durable thermal barrier coatings with novel microstructures deposited by solution-precursor plasma spray. Acta Mater 49(12):2251–2257

    Article  CAS  Google Scholar 

  24. Jordan EH et al (2004) Superior thermal barrier coatings using solution precursor plasma spray. J Therm Spray Technol 13(1):57–65

    Article  CAS  Google Scholar 

  25. Gell M, Xie L, Ma X, Jordan EH, Padture NP (2004) Highly durable thermal barrier coatings made by the solution precursor plasma spray process. Surf Coat Technol 177–178:97–102

    Article  CAS  Google Scholar 

  26. Dom R, Sivakumar G, Hebalkar NY, Joshi SV, Borse PH (2012) Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying. Mater Res Bull 47(3):562–570

    Article  CAS  Google Scholar 

  27. Garcia E, Zhang ZB, Coyle TW, Hao SE, Mu SL (2007) Liquid precursors plasma spraying of TiO2 and Ce- doped Ba(Zr0.2Ti0.8)O3 coatings. In: Thermal spray 2007: global coating solutions, pp 650–654

    Google Scholar 

  28. Ma TD, Ge XQ, Zhang SH, Roth YD, Xiao J (2004) Solution plasma spray synthesis of NiZnFe2O4 magnetic nanocomposite thick films. In: International thermal spray conference 2004

    Google Scholar 

  29. Ma XQ, Roth J, Gandy DW, Frederick GJ (2006) A new high-velocity oxygen fuel process for making finely structured and highly bonded Inconel alloy layers from liquid feedstock. In: Proceedings of the international thermal spray conference, 2006, pp 670–675

    Article  CAS  Google Scholar 

  30. Joshi SV, Sivakumar G, Raghuveer T, Dusane RO (2014) Hybrid plasma-sprayed thermal barrier coatings using powder and solution precursor feedstock. J Therm Spray Technol 23(4):616–624

    Article  CAS  Google Scholar 

  31. Gopal V, Goel S, Manivasagam G, Joshi S (2019) Performance of hybrid powder-suspension axial plasma sprayed Al2O3-YSZ coatings in bovine serum solution. Materials 12(12):1922

    Article  CAS  Google Scholar 

  32. Kassner H, Siegert R, Hathiramani D, Vassen R, Stoever D (2008) Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings. J Therm Spray Technol 17(1):115–123

    Article  CAS  Google Scholar 

  33. Toma FL, Potthoff A, Berger LM, Leyens C (2015) Demands, potentials, and economic aspects of thermal spraying with suspensions: a critical review. J Therm Spray Technol 24(7):1143–1152

    Article  Google Scholar 

  34. Vaen R, Kaner H, Mauer G, Stöver D (2010) Suspension plasma spraying: process characteristics and applications. J Therm Spray Technol 19(1–2):219–225

    Google Scholar 

  35. Rampon R, Marchand O, Filiatre C, Bertrand G (2008) Influence of suspension characteristics on coatings microstructure obtained by suspension plasma spraying. Surf Coat Technol 202(18):4337–4342

    Article  CAS  Google Scholar 

  36. Pateyron B, Calve N, Pawłowski L (2013) Influence of water and ethanol on transport properties of the jets used in suspension plasma spraying. Surf Coat Technol 220:257–260

    Article  CAS  Google Scholar 

  37. Ganvir A (2018) Design of suspension plasma sprayed thermal barrier coatings. Ph.D. thesis, University West, ISBN 978-91-87531-92-7, Trollhättan

    Google Scholar 

  38. Fazilleau J, Delbos C, Rat V, Coudert JF, Fauchais P, Pateyron B (2006) Phenomena involved in suspension plasma apraying part 1: suspension injection and behavior. Plasma Chem Plasma Process 26(4):371–391

    Article  CAS  Google Scholar 

  39. Mahade S (2018) Functional performance of gadolinium Zirconate/Yttria stabilized zirconia multi-layered thermal barrier coatings. Ph.D. thesis, ISBN 978-91-87531-86-6, Trollhättan

    Google Scholar 

  40. Fauchais P, Rat V, Coudert JF, Etchart-Salas R, Montavon G (2008) Operating parameters for suspension and solution plasma-spray coatings. Surf Coat Technol 202(18):4309–4317

    Article  CAS  Google Scholar 

  41. Kaßner H, Vaßen R, Stöver D (2008) Study on instant droplet and particle stages during suspension plasma spraying (SPS). Surf Coat Technol 202(18):4355–4361

    Article  CAS  Google Scholar 

  42. Oberste-Berghaus J, Bouaricha S, Legoux J-G, Moreau C (2005) Injection conditions and in-flight particles states in suspension plasma spraying of alumina and zirconia nano-ceramics. In: Thermal spray 2005: proceedings of the international thermal spray conference, pp 512–518

    Google Scholar 

  43. Aranke O (2018) Effect of spray parameters on micro-structure and lifetime of suspension plasma sprayed thermal barrier coatings. Master Thesis, University West, URN: urn:nbn:se:hv:diva-12986, Trollhättan

    Google Scholar 

  44. Vanevery K et al (2011) Column formation in suspension plasma-sprayed coatings and resultant thermal properties. J Therm Spray Technol 20(4):817–828

    Article  CAS  Google Scholar 

  45. Ganvir A, Curry N, Björklund S, Markocsan N, Nylén P (2015) Characterization of microstructure and thermal properties of YSZ coatings obtained by axial suspension plasma spraying (ASPS). J Therm Spray Technol 24(7):1195–1204

    Article  CAS  Google Scholar 

  46. Guo H, Kuroda S, Murakami H (2006) Microstructures and properties of plasma-sprayed segmented thermal barrier coatings. J Am Ceram Soc 89(4):1432–1439

    Article  CAS  Google Scholar 

  47. Carpio P et al (2013) Correlation of thermal conductivity of suspension plasma sprayed yttria stabilized zirconia coatings with some microstructural effects. Mater Lett 107:370–373

    Article  CAS  Google Scholar 

  48. Schwingel D, Taylor R, Haubold T, Wigren J, Gualco C (1998) Mechanical and thermophysical properties of thick PYSZ thermal barrier coatings: correlation with microstructure and spraying parameters. Surf Coat Technol 108–109(1–3):99–106

    Article  Google Scholar 

  49. Ganvir A, Markocsan N, Joshi S (2016) Influence of isothermal heat treatment on porosity and crystallite size in axial suspension plasma sprayed thermal barrier coatings for gas turbine applications. Coatings 7(1):4

    Article  CAS  Google Scholar 

  50. Stecura S (1979) Effects of compositional changes on the performance of a thermal barrier coating system for aircraft gas turbine engines. In: Presented at the American ceramic society, annual conference on composites and advanced materials, Merritt Island

    Google Scholar 

  51. Aygun A, Vasiliev AL, Padture NP, Ma X (2007) Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater 55(20):6734–6745

    Article  CAS  Google Scholar 

  52. Stöver D, Pracht G, Lehmann H, Dietrich M, Döring J-E, Vaßen R (2004) New material concepts for the next generation of plasma-sprayed thermal barrier coatings. J Therm Spray Technol 13(1):76–83

    Article  Google Scholar 

  53. Leckie RM, Krämer S, Rühle M, Levi CG (2005) Thermochemical compatibility between alumina and ZrO2–GdO3/2 thermal barrier coatings. Acta Mater 53(11):3281–3292

    Article  CAS  Google Scholar 

  54. Jarligo MO, Mack DE, Vassen R, Stöver D (2009) Application of plasma-sprayed complex perovskites as thermal barrier coatings. J Therm Spray Technol 18(2):187–193

    Article  CAS  Google Scholar 

  55. Ma W, Mack D, Malzbender J, Vaßen R, Stöver D (2008) Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings. J Eur Ceram Soc 28(16):3071–3081

    Article  CAS  Google Scholar 

  56. Padture NP, Klemens PG (2005) Low thermal conductivity in garnets. J Am Ceram Soc 80(4):1018–1020

    Article  Google Scholar 

  57. Guo X, Lu Z, Jung Y-G, Li L, Knapp J, Zhang J (2016) Thermal properties, thermal shock, and thermal cycling behavior of Lanthanum Zirconate-based thermal barrier coatings. Metall Mater Trans E 3(2):64–70

    CAS  Google Scholar 

  58. Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D (2010) Overview on advanced thermal barrier coatings. Surf Coat Technol 205(4):938–942

    Article  CAS  Google Scholar 

  59. Clarke DR, Phillpot SR (2005) Thermal barrier coating materials. Mater Today 8(6):22–29

    Article  CAS  Google Scholar 

  60. Vassen R, Cao X, Tietz F, Basu D, Stöver D (2000) Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc 83(8):2023–2028

    Article  CAS  Google Scholar 

  61. Wu J et al (2004) Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc 85(12):3031–3035

    Article  Google Scholar 

  62. Mahade S, Curry N, Björklund S, Markocsan N, Nylén P, Vaßen R (2017) Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Surf Coat Technol 318:208–216

    Article  CAS  Google Scholar 

  63. Drexler JM, Ortiz AL, Padture NP (2012) Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass. Acta Mater 60(15):5437–5447

    Article  CAS  Google Scholar 

  64. Gledhill AD, Reddy KM, Drexler JM, Shinoda K, Sampath S, Padture NP (2011) Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Mater Sci Eng A 528(24):7214–7221

    Article  CAS  Google Scholar 

  65. Bakan E, Mack DE, Mauer G, Vaßen R (2014) Gadolinium Zirconate/YSZ thermal barrier coatings: plasma spraying, microstructure, and thermal cycling behavior. J Am Ceram Soc 97(12):4045–4051

    Article  CAS  Google Scholar 

  66. Zhong X et al (2014) Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating. J Alloys Compd 593:50–55

    Article  CAS  Google Scholar 

  67. Lee KS, Lee DH, Kim TW (2014) Microstructure controls in Gadolinium Zirconate/YSZ double layers and their properties. J Ceram Soc Japan 122(1428):668–673

    Article  CAS  Google Scholar 

  68. Bakan E, Mack DE, Mauer G, Mücke R, Vaßen R (2015) Porosity–property relationships of plasma-sprayed Gd2Zr2O7/YSZ thermal barrier coatings. J Am Ceram Soc 98(8):2647–2654

    Article  CAS  Google Scholar 

  69. Mahade S, Curry N, Björklund S, Markocsan N, Nylén P (2015) Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray. Surf Coat Technol 283:329–336

    Article  CAS  Google Scholar 

  70. Mahade S, Li R, Curry N, Björklund S, Markocsan N, Nylén P (2016) Isothermal oxidation behavior of Gd2Zr2O7/YSZ multilayered thermal barrier coatings. Int J Appl Ceram Technol 13(3):443–450

    Article  CAS  Google Scholar 

  71. Mahade S, Curry N, Björklund S, Markocsan N, Nylén P, Vaßen R (2017) Erosion performance of gadolinium Zirconate-based thermal barrier coatings processed by suspension plasma spray. J Therm Spray Technol 26(1–2):108–115

    Article  CAS  Google Scholar 

  72. Mahade S, Zhou D, Curry N, Markocsan N, Nylén P, Vaßen R (2019) Tailored microstructures of gadolinium zirconate/YSZ multi-layered thermal barrier coatings produced by suspension plasma spray: durability and erosion testing. J Mater Process Technol 264:283–294

    Article  CAS  Google Scholar 

  73. Algenaid W, Ganvir A, Filomena Calinas R, Varghese J, Rajulapati K, Joshi S (2019) Influence of microstructure on the erosion behaviour of suspension plasma sprayed thermal barrier coatings. Surf Coat Technol 375:86–99

    Article  CAS  Google Scholar 

  74. Ganvir A, Joshi S, Markocsan N, Vassen R (2018) Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance. Mater Des 144:192–208

    Article  CAS  Google Scholar 

  75. Ganvir A, Filomena R, Markocsan N, Curry N, Joshi S (2019) Experimental visualization of microstructure evolution during suspension plasma spraying of thermal barrier coatings. J Eur Ceram Soc 39(2–3):470–481

    Article  CAS  Google Scholar 

  76. Goel S, Björklund S, Curry N, Wiklund U, Joshi SV (2017) Axial suspension plasma spraying of Al2O3coatings for superior tribological properties. Surf Coat Technol 315:80–87

    Article  CAS  Google Scholar 

  77. Aranke O, Algenaid W, Awe S, Joshi S (2019) Coatings for automotive gray cast iron brake discs: a review. Coatings 9:552

    Article  CAS  Google Scholar 

  78. Mubarok F, Espallargas N (2015) Suspension plasma spraying of sub-micron silicon carbide composite coatings. J Therm Spray Technol 24(5):817–825

    Article  CAS  Google Scholar 

  79. Berghaus JO, Marple B, Moreau C (2006) Suspension plasma spraying of nanostructured WC-12Co coatings. J Therm Spray Technol 15:676–681

    Article  CAS  Google Scholar 

  80. Tejero-Martin D, Rezvani Rad M, McDonald A, Hussain T (2019) Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings. J Therm Spray Technol 28(4):598–644. Springer New York LLC

    Article  CAS  Google Scholar 

  81. Robinson BW et al (2015) Suspension plasma sprayed coatings using dilute hydrothermally produced titania feedstocks for photocatalytic applications. J Mater Chem A 3(24):12680–12689

    Article  CAS  Google Scholar 

  82. Jian Zhou S, Bai Y, Ma W, dong Chen W (2019) Suspension plasma-sprayed fluoridated hydroxyapatite/calcium silicate composite coatings for biomedical applications. J Therm Spray Technol 28(5):1025–1038

    Article  CAS  Google Scholar 

  83. Nielsen ML, Hamilton PM, Walsh RJ (1963) Ultrafine metal oxides by decomposition of salts in a flame. In: Kuhn WE, Lamprey H, Sheer C (eds) Ultrafine particles. Wiley, New York, p 181

    Google Scholar 

  84. Bhatia T et al (2002) Mechanisms of ceramic coating deposition in solution-precursor plasma spray. J Mater Res 17(9):2363–2372

    Article  CAS  Google Scholar 

  85. Chen D, Jordan EH, Gell M (2008) Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process. Surf Coat Technol 202(10):2132–2138

    Article  CAS  Google Scholar 

  86. Xie L et al (2006) Formation of vertical cracks in solution-precursor plasma-sprayed thermal barrier coatings. Surf Coat Technol 201(3–4):1058–1064

    Article  CAS  Google Scholar 

  87. Jiang C, Jordan EH, Harris AB, Gell M, Roth J (2015) Double-layer gadolinium zirconate/yttria-stabilized zirconia thermal barrier coatings deposited by the solution precursor plasma spray process. J Therm Spray Technol 24(6):895–906

    Article  CAS  Google Scholar 

  88. Tummala R, Guduru RK, Mohanty PS (2012) Solution precursor plasma deposition of nanostructured CdS thin films. Mater Res Bull 47(3):700–707

    Article  CAS  Google Scholar 

  89. Gell M, Wang J, Kumar R, Roth J, Jiang C, Jordan EH (2018) Higher temperature thermal barrier coatings with the combined use of yttrium aluminum garnet and the solution precursor plasma spray process. J Therm Spray Technol 27(4):543–555

    Article  CAS  Google Scholar 

  90. Viswanathan V, Filmalter R, Patil S, Deshpande S, Seal S (2007) High-temperature oxidation behavior of solution precursor plasma sprayed Nanoceria coating on martensitic steels. J Am Ceram Soc 90(3):870–877

    Article  CAS  Google Scholar 

  91. Singh V, Karakoti A, Kumar A, Saha A, Basu S, Seal S (2010) Precursor dependent microstructure evolution and nonstoichiometry in nanostructured cerium oxide coatings using the solution precursor plasma spray technique. J Am Ceram Soc 93(11):3700–3708

    Article  CAS  Google Scholar 

  92. Michaux P, Montavon G, Grimaud A, Denoirjean A, Fauchais P (2010) Elaboration of porous NiO/8YSZ layers by several SPS and SPPS routes. J Therm Spray Technol 19(1–2):317–327

    Article  CAS  Google Scholar 

  93. Wang Y, Coyle TW (2011) Solution precursor plasma spray of porous La1-xSrx MnO3 perovskite coatings for SOFC cathode application. J Fuel Cell Sci Technol 8(2)

    Google Scholar 

  94. Chen D, Jordan EH, Renfro MW, Gell M (2009) Dy: YAG phosphor coating using the solution precursor plasma spray process. J Am Ceram Soc 92(1):268–271

    Article  CAS  Google Scholar 

  95. Laine RM, Marchal JC, Sun HP, Pan XQ (2006) Nano-α-Al2O3 by liquid-feed flame spray pyrolysis. Nat Mater 5(9):710–712

    Article  CAS  Google Scholar 

  96. Jun BS, Lee SJ, Messing GL (2006) Synthesis of Nano-scaled α-Al2O3 particles by combustion spray pyrolysis. Key Eng Mater 317–318:207–210

    Article  Google Scholar 

  97. Hinklin T et al (2004) Liquid-feed flame spray pyrolysis of metalloorganic and inorganic alumina sources in the production of nanoalumina powders. Chem Mater 16(1):21–30

    Article  CAS  Google Scholar 

  98. Smith RM, Zhou XD, Huebner W, Anderson HU (2004) Novel yttrium-stabilized zirconia polymeric precursor for the fabrication of thin films. J Mater Res 19(9):2708–2713

    Article  CAS  Google Scholar 

  99. Ismail HM, Hussein GAM (1996) Texture properties of yttrium oxides generated from different inorganic precursors. Powder Technol 87(1):87–92

    Article  CAS  Google Scholar 

  100. Chen D, Jordan EH, Gell M, Ma X (2008) Dense TiO2 coating using the solution precursor plasma spray process. J Am Ceram Soc 91(3):865–872

    Article  CAS  Google Scholar 

  101. Sivakumar G, Ramakrishna M, Dusane RO, Joshi SV (2015) Effect of SPPS process parameters on in-flight particle generation and splat formation to achieve pure α-Al2O3 coatings. J Therm Spray Technol 24(7):1221–1234

    Article  CAS  Google Scholar 

  102. Schlichting KW, Padture NP, Jordan EH, Gell M (2003) Failure modes in plasma-sprayed thermal barrier coatings. Mater Sci Eng A 342(1–2):120–130

    Article  Google Scholar 

  103. Govindarajan S, Dusane RO, Joshi SV (2014) Understanding the formation of vertical cracks in solution precursor plasma sprayed yttria-stabilized zirconia coatings. J Am Ceram Soc 97(11):3396–3406

    Article  CAS  Google Scholar 

  104. Gell M, Xie L, Jordan EH, Padture NP (2004) Mechanisms of spallation of solution precursor plasma spray thermal barrier coatings. Surf Coat Technol 188–189(1-3. SPEC.ISS.):101–106

    Article  CAS  Google Scholar 

  105. Praveen K, Sravani N, Alroy RJ, Shanmugavelayutham G, Sivakumar G (2019) Hot corrosion behaviour of atmospheric and solution precursor plasma sprayed (La0.9Gd0.1)2Ce2O7 coatings in sulfate and vanadate environments. J Eur Ceram Soc 39(14):4233–4244

    Article  CAS  Google Scholar 

  106. Gao L, Guo H, Gong S, Xu H (2014) Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration. J Eur Ceram Soc 34(10):2553–2561

    Article  CAS  Google Scholar 

  107. Kumar R, Govindarajan S, Janardhana RKSK, Rao TN, Joshi SV, Anandan S (2016) Facile one-step route for the development of in situ Cocatalyst-modified Ti3+ self-doped TiO2 for improved visible-light photocatalytic activity. ACS Appl Mater Interfaces 8(41):27642–27653

    Article  CAS  Google Scholar 

  108. Dom R, Kumar GS, Hebalkar NY, Joshi SV, Borse PH (2013) Eco-friendly ferrite nanocomposite photoelectrode for improved solar hydrogen generation. RSC Adv 3(35):15217–15224

    Article  CAS  Google Scholar 

  109. Tummala R, Guduru RK, Mohanty PS (2011) Solution precursor plasma deposition of nanostructured ZnO coatings. Mater Res Bull 46(8):1276–1282

    Article  CAS  Google Scholar 

  110. Yu Z, Moussa H, Liu M, Schneider R, Moliere M, Liao H (2018) Solution precursor plasma spray process as an alternative rapid one-step route for the development of hierarchical ZnO films for improved photocatalytic degradation. Ceram Int 44(2):2085–2092

    Article  CAS  Google Scholar 

  111. Nehe P, Sivakumar G, Kumar S (2015) Solution precursor plasma spray (SPPS) technique of catalyst coating for hydrogen production in a single channel with cavities plate type methanol based microreformer. Chem Eng J 277:168–175

    Article  CAS  Google Scholar 

  112. Mohanty PS, Anton SBCMN, Guduru KR (2010) Direct thermal spray synthesis of Li ion battery components, US patent No. US20100323118A1

    Google Scholar 

  113. Varadaraajan V, Satishkumar BC, Nanda J, Mohanty P (2011) Direct synthesis of nanostructured V2O5 films using solution plasma spray approach for lithium battery applications. J Power Sources 196(24):10704–10711

    Article  CAS  Google Scholar 

  114. Chen D, Jordan EH, Renfro MW, Gell M (2012) Solution precursor plasma spray Eu: Y2O3 phosphor coating. Int J Appl Ceram Technol 9(3):636–641

    Article  CAS  Google Scholar 

  115. Golozar M, Chien K, Coyle TW (2012) Orthorhombic $α$-MoO3 coatings with lath-shaped morphology developed by SPPS: applications to super-capacitors. J Therm Spray Technol 21(3–4):469–479

    Article  CAS  Google Scholar 

  116. Guo XZ et al (2005) Synthesis of yttrium iron garnet (YIG) by citrate-nitrate gel combustion and precursor plasma spray processes. J Magn Magn Mater 295(2):145–154

    Article  CAS  Google Scholar 

  117. Killinger A, Gadow R, Mauer G, Guignard A, Vaen R, Stöver D (2011) Review of new developments in suspension and solution precursor thermal spray processes. J Therm Spray Technol 20(4):677–695

    Article  Google Scholar 

  118. Moign A, Vardelle A, Themelis NJ, Legoux JG (2010) Life cycle assessment of using powder and liquid precursors in plasma spraying: the case of yttria-stabilized zirconia. Surf Coat Technol 205(2):668–673

    Article  CAS  Google Scholar 

  119. Marr M, Kuhn J, Metcalfe C, Harris J, Kesler O (2014) Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying. J Power Sources 245:398–405

    Article  CAS  Google Scholar 

  120. Joshi SV, Sivakumar G (2015) Hybrid processing with powders and solutions: a novel approach to deposit composite coatings. J Therm Spray Technol 24(7):1166–1186

    Article  CAS  Google Scholar 

  121. Björklund S, Goel S, Joshi S (2018) Function-dependent coating architectures by hybrid powder-suspension plasma spraying: injector design, processing and concept validation. Mater Des 142:56–65

    Article  Google Scholar 

  122. Sivakumar G, Banerjee S, Raja VS, Joshi SV (2018) Hot corrosion behavior of plasma sprayed powder-solution precursor hybrid thermal barrier coatings. Surf Coat Technol 349:452–461

    Article  CAS  Google Scholar 

  123. Ajay A, Raja VS, Sivakumar G, Joshi SV (2015) Hot corrosion behavior of solution precursor and atmospheric plasma sprayed thermal barrier coatings. Corros Sci 98:271–279

    Article  CAS  Google Scholar 

  124. Tesar T, Musalek R, Lukac F, Medricky J, Cizeka J, Rimal V, Joshi S, Chraska T (2019) Increasing α-phase content of alumina-chromia coatings deposited by suspension plasma spraying using hybrid and intermixed concepts. Surf Coat Technol 371:298–311

    Article  CAS  Google Scholar 

  125. Chen D, Gell M, Jordan EH, Cao E, Ma X (2007) Thermal stability of air plasma spray and solution precursor plasma spray thermal barrier coatings. J Am Ceram Soc 90(10):3160–3166

    Article  CAS  Google Scholar 

  126. Duarte W, Rossignol S, Vardelle M (2014) La2Zr2O7(LZ) coatings by liquid feedstock plasma spraying: the role of precursors. J Therm Spray Technol 23(8):1425–1435

    Article  CAS  Google Scholar 

  127. Candidato RT, Sokołowski Pawełand L, Pawłowski G, Lecomte-Nana CC, Denoirjean A (2017) Development of hydroxyapatite coatings by solution precursor plasma spray process and their microstructural characterization. Surf Coat Technol 318:39–49

    Article  CAS  Google Scholar 

  128. Wang WZ, Coyle T, Zhao D (2014) Preparation of lanthanum zirconate coatings by the solution precursor plasma spray. J Therm Spray Technol 23(5):827–832

    Article  CAS  Google Scholar 

  129. Sivakumar G, Dusane RO, Joshi SV (2013) A novel approach to process phase pure α-Al2O3 coatings by solution precursor plasma spraying. J Eur Ceram Soc 33(13–14):2823–2829

    Article  CAS  Google Scholar 

  130. Sanpo N, Siao A, Ang M, Hasan F, Wang J, Berndt CC (2012) Phases and microstructures of solution precursor plasma sprayed cobalt ferrite splats. In: Proceedings of 5th Asian thermal spray conference, pp 145–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Joshi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Joshi, S., Markocsan, N., Nylén, P., Sivakumar, G. (2020). New Generation Ceramic Coatings for High-Temperature Applications by Liquid Feedstock Plasma Spraying. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics