Skip to main content

Phytoplankton: Biodiesel Production and Other Applications for Marine Biotechnology

  • Living reference work entry
  • First Online:
  • 168 Accesses

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

Definitions

Phytoplankton:

also known as microalgae, are similar to terrestrial plants in that they contain chlorophyll and require sunlight in order to live and grow. Most phytoplankton are buoyant and float in the upper part of the ocean, where sunlight penetrates the water. Phytoplankton also require inorganic nutrients such as nitrates, phosphates, and sulfur which they convert into proteins, fats, and carbohydrates (NOAA 2017).

Biodiesel:

is defined as a renewable fuel that can be produced from a wide range of vegetable oils or animal fats. May be used either as a replacement for or as a component of diesel fuel. Technically it is a mixture of monoalkyl esters derived from lipid feedstocks, such as vegetable oils or animal fats (Negm et al. 2017).

Marine Biotechnology:

is the application of science and technology to living organisms from marine resources, as well as parts, products, and models thereof, to alter living or nonliving materials for the production of knowledge, goods,...

This is a preview of subscription content, log in via an institution.

References

  • Abida H, Ruchaud S, Rios L, Humeau A, Probert I, De Vargas C, Bach S, Bowler C (2013) Bioprospecting marine plankton. Mar Drugs 11:4594–4611

    Article  Google Scholar 

  • Ariyadej C, Tansakul R, Tansakul P, Angsupanich S (2004) Phytoplankton diversity and its relationships to the physicochemical environment in the Banglang reservoir, Yala province. Songklahnakarin J Sci Technol 26(5):595–607

    Google Scholar 

  • Barbosa MJ, Wijffels RH (2013) Biofuels from microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. https://doi.org/10.1002/9781118567166.ch29

    Chapter  Google Scholar 

  • Beaugrand G, Kirby RR (2010) Climate, plankton and cod. Glob Chang Biol 16:1268–1280

    Article  Google Scholar 

  • Beaugrand G, Edwards M, Legendre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. PNAS 107:10120–10124

    Article  Google Scholar 

  • Becker EW (1988) Micro-algae for human and animal consumption. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotecnology. Cambridge University, Cambridge, pp 222–256

    Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, London, pp 312–351

    Google Scholar 

  • Beijerinck MW (1890) Kulturversuche mit Zoochloren, Lichenengonidien und anderen niederen. Algen Bot Ztg 48:725–785

    Google Scholar 

  • Borowitzka A (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1–3):313–321. ISSN 01681656

    Article  Google Scholar 

  • Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:7999

    Article  Google Scholar 

  • Brown MR et al (1999) The vitamin content of microalgae used in aquaculture. J Appl Phycol 11(3):247–255. ISSN 09218971

    Article  Google Scholar 

  • Bruno JJ (2001) Edible microalgae: a review of the health research, vol 3. Center for Nutritional Psychology, Pacifica. 56p

    Google Scholar 

  • Burlew JS (ed) (1953) Algae culture. From laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC

    Google Scholar 

  • Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International 32:831–849. https://doi.org/10.1016/j.envint.2006.05.002

    Article  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102(1):50–56. ISSN 09608524

    Article  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87(1):1–14

    Article  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. https://doi.org/10.1016/j.tibtech.2007.12.002

    Article  Google Scholar 

  • Cohen Z (1986) Products from microalgae. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC, Boca Raton, pp 421–454

    Google Scholar 

  • Darzins A, Pienkos P, Edye L (2010). Current status and potential for algal biofuels production. A Report to IEA Bioenergy Task 39

    Google Scholar 

  • Durand-Chastel H (1980) Production and use of Spirulina in Mexico. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 51–64

    Google Scholar 

  • FAO – Food and Agriculture Organization (2008) The state of food and agriculture 2008. Food and Agriculture Organization, New York

    Book  Google Scholar 

  • Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558

    Article  Google Scholar 

  • Gebreslassie BH, Waymire R, You F (2013) Sustainable design and synthesis of algae-based biorefinery for simultaneous hydrocarbon biofuel production and carbon sequestration. AICHE J 59(5):1599–1621

    Article  Google Scholar 

  • Greenwell HC, Laurens LML et al (2009) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726

    Article  Google Scholar 

  • Griffiths M, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  Google Scholar 

  • Grobbelaar JU (2004) Algal biotechnology: real opportunities for Africa. S Afr J Bot 70(1):140–144

    Article  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  Google Scholar 

  • Harun R et al (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    Google Scholar 

  • Heydarizadeh P, Poirier I, Loizeau D, Ulmann L, Mimouni V, Schoefs B, Bertrand M (2013) Plastids of marine phytoplankton produce bioactive pigments and lipids. Mar Drugs 11(9):3425–3471

    Article  Google Scholar 

  • Kamyab H, Fadhil M, Lee C, Ponraj M, Soltani M, Eva S (2014) Micro-macro algal mixture as a promising agent for treating POME discharge and its potential use as animal feed stock enhancer. J Teknol 68:1–4

    Google Scholar 

  • Kawaguchi K (1980) Microalgae production systems in Asia. In: Shelef G, Soeder CJ (eds) Algae biomass production and use. Elsevier/North Holland Biomedical Press, Amsterdam, pp 25–33

    Google Scholar 

  • Kirk EA, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  • Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18:27–46

    Article  Google Scholar 

  • Kring SA, Xia X, Powers SE, Twiss MR (2013) Crustacean zooplankton in aerated wastewater treatment lagoons as a potential feedstock for biofuel. Environ Technol 34(13–14):1973–1981

    Article  Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia–Pacific rim. J Appl Phycol 9:403–411

    Article  Google Scholar 

  • Leman J (1997) Oleaginous microorganisms: an assessment of the potential. Adv Appl Microbiol 51:195243

    Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  Google Scholar 

  • Liu D, Keesing JK, He P, Wang Z, Shi Y, Wang Y (2013) The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuar Coast Shelf Sci 129:2–10

    Article  Google Scholar 

  • Lucker BF, Hall CC, Zegarac R, Kramer DM (2014) The environmental photobioreactor (ePBR): an algal culturing platform for simulating dynamic natural environments. Algal Res 6(part B):242–249

    Article  Google Scholar 

  • Market and markets (2016) Omega-3 PUFA Market by type (DHA, EPA, ALA), application (dietary supplements, functional foods & beverages, pharmaceuticals, infant formula), source (marine, plant), (sub-source), & region – global forecasts to 2020. http://www.marketsandmarkets.com/Market-Reports/omega-3-omega-6-227.html

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232. ISSN 13640321

    Article  Google Scholar 

  • Mirón AS, Garcı́a MCC, Gómez AC, Camacho FGA, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  Google Scholar 

  • Molina E, Sevilla JMF, Fernandez FGA (2010) Microalgae, mass culture methods. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation and cell technology. pp. 1–24. Wiley. https://doi.org/10.1002/9780470054581.eib418

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534. ISSN 0921–8971

    Article  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux A (2011) Bioprospecting for hyper-lipid producing icroalgal strains for sustainable biofuel production. Bioresour Technol South Africa 102(1):57–70

    Article  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  Google Scholar 

  • Negm NA, Abou Kana MTH, Youssif MA, Mohamed MY (2017) Biofuels from vegetable oils as alternative fuels: advantages and disadvantages, pp 289–367. https://doi.org/10.1201/9781315120829-18

    Chapter  Google Scholar 

  • NOAA (2017) National Ocean Service. National Oceanic and Atmospheric Administration. US Department of Commerce. National Ocean Service website

    Google Scholar 

  • OECD (2017) Marine biotechnology definitions, infrastructures and directions for innovation OECD science, technology and innovation policy papers, no 43, 51p

    Google Scholar 

  • Pauly D, Christensen V, Guénette S, Pitcher TJ, Sumaila UR, Walters CJ, Watson R, Zeller D (2002) Towards sustainability in world fisheries. Nature 418:689–695

    Article  Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels-a process view. J Biotechnol 142(1):64–69. ISSN 01681656

    Article  Google Scholar 

  • Pratoomyot J, Srivilas P, Noiraksar T (2005) Fatty acids composition of 10 microalgal species. Songklanakarin J Sci Technol 27:79–87

    Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293. ISSN 01757598

    Article  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  Google Scholar 

  • Ratledge C (2001) Microorganisms as source of polyunsaturated fatty acids. In: Gunstone FD (ed) Structured and modified lipids. Marcel Dekker, New York, pp 351–399

    Google Scholar 

  • Raven PH et al (1988) Biologia vegetal, 6th edn. Guanabara Koogan, Rio de Janeiro, 906p

    Google Scholar 

  • Richmond A (1988) Spirulina. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotecnology. Cambridge University, Cambridge, pp 85–121

    Google Scholar 

  • Richmond A (ed) (1990) CRC handbook of microalgal mass culture. CRC, Florida, 528p

    Google Scholar 

  • Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology, Wiley-Blackwell, 588 pp. ISBN: 978-0-632-05953-9 January

    Google Scholar 

  • Ritchie RJ, Guy K, Philp JC (2013) Policy to support marine biotechnology based solutions to global challenges. Trends Biotechnol 31:128–131

    Article  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis, and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  Google Scholar 

  • Sawayama S, Inoue S, Dote Y, Yokoyama S-Y (1995) CO2 fixation and oil production through microalga. Energy Convers Manag 36:729–731

    Article  Google Scholar 

  • Scarlat N, Dallemand JF, Pinilla FG (2008) Impact on agricultural land resources of biofuels production and use in the European union. Bioenergy: challenges and opportunities. International Conference and Exhibition on Bioenergy

    Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  Google Scholar 

  • Selvaratnam T, Pegallapati AK, Reddy H, Kanapathipillai N, Nirmalakhandan N, Deng S, Lammers PJ (2015) Algal biofuels from urban wastewat ers: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass. Bioresour Technol 182:232–238

    Article  Google Scholar 

  • Shelef G, Soeder CJ (eds) (1980) Algae biomass. Production and use. Elsevier/North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Smith VH, Sturm BSM, de Noyelles FJ, Billings SA (2009) The ecology of algal biodiesel production. Trends Ecol Evol 25:301–309

    Article  Google Scholar 

  • Spolaore P et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. ISSN 13891723

    Article  Google Scholar 

  • Stolz P, Obermayer B (2005) Manufacturing microalgae for skin care. Cosmet Toiletries 120:99–106

    Google Scholar 

  • Tong KL, You FQ, Rong G (2014) Robust design and operations of hydrocarbon biofuel supply chain integrating with existing petroleum refineries considering unit cost objective. Comput Chem Eng 68:128–139

    Article  Google Scholar 

  • Tsukada O, Kawahara T, Miyachi S (1977) Mass culture of Chlorella in Asian countries. In: Mitsui A, Miyachi S, Pietro AS, Tamura S (eds) Biological solar energy conversion. Academic, New York, pp 363–365

    Chapter  Google Scholar 

  • Udakis L (2012) Biofuels. In: Dariel Burdass (Ed) 2012. Society for General Microbiology. 2pp. Reading

    Google Scholar 

  • Venkatamaran LV (1985) Blue-green algae as biofertilizer. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC Press, Boca Raton, pp 455–471

    Google Scholar 

  • Venkataraman LV, Becker EW (1985) Biotechnology and utilization of algae – the Indian experience. Department of Science and Technology, New Delhi

    Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  Google Scholar 

  • Wang MV, Fang SC, Chang VH (2015) Exploring technological opportunities by mining the gaps between science and technology: microalgal biofuels. Technol Forecast Socl Change 92:182–119

    Article  Google Scholar 

  • Warburg O (1919) Über die Geschwindigkeit der Kohlensäurezusammensetzung in lebenden Zellen. Biochem Z 100(1919):230–270

    Google Scholar 

  • Wharton RA, Smernoff DT, Averner MM (1988) Algae in space. In: Lembi C, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 485–509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Morgado .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Morgado, F., Vieira, L.R. (2020). Phytoplankton: Biodiesel Production and Other Applications for Marine Biotechnology. In: Leal Filho, W., Azul, A., Brandli, L., Lange Salvia, A., Wall, T. (eds) Affordable and Clean Energy. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71057-0_118-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71057-0_118-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71057-0

  • Online ISBN: 978-3-319-71057-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics