Skip to main content

Mathematics and Recurrent Population Outbreaks

  • Living reference work entry
  • First Online:
Handbook of the Mathematics of the Arts and Sciences
  • 327 Accesses

Abstract

Despite that outbreaks had been observed for hundreds of years for many populations, it took until the 1920s before the first mechanisms that did not involve human interference were suggested. Just a few mechanisms were included in the first models and the question whether the inclusion of other, very plausible, mechanisms could alter the predictions remained.

In this chapter, we follow the development of models that have been proposed to explain oscillatory population dynamics from the early models suggested by Lotka (1925) and Volterra (1926) until global dynamical questions that are still open for models incorporating explicit resource dynamics, like the chemostat, cf Kuang (1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ardito A, Ricciardi P (1995) Lyapunov functions for a generalized Gause-type model. J Math Biol 33:816–828

    Article  MathSciNet  Google Scholar 

  • Brauer F, Castillo-Chávez C (2001) Mathematical models in population biology and epidemiology, volume 40 of Texts in applied mathematics. Springer, New York

    Book  Google Scholar 

  • Duff GFD (1953) Limit cycles and rotated vector fields. Ann Math 57(1):15–31

    Article  MathSciNet  Google Scholar 

  • Elton CS (1930) Animal ecology and evolution. Clarendon Press, Oxford

    Google Scholar 

  • Elton CS (1942) Voles, mice and lemmings. Clarendon Press, Oxford

    Google Scholar 

  • Gause GF (1934) The struggle for existence. The Williams & Wilkins, Baltimore

    Book  Google Scholar 

  • González-Olivares E, Rojas-Palma A (2011) Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey. Bull Math Biol 73:1378–1397

    Article  MathSciNet  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, Berlin

    Book  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  Google Scholar 

  • Hewitt CG (1921) The conservation of the wild life of Canada. Charles Scribner’s Sons, New York

    Google Scholar 

  • Hirsch MW, Smale S, Devaney RL (2013) Differential equations, dynamical systems, and an introduction to chaos. Academic, Oxford

    MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1988) The theory of evolution and dynamical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91(7):385–398

    Article  Google Scholar 

  • Kooi BW, Boer MP, Kooijman SALM (1998) On the use of the logistic equation in models of food chains. Bull Math Biol 60:231–246

    Article  Google Scholar 

  • Kuang Y (1988) Nonuniqueness of limit cycles of Gause-type predator-prey systems. Appl Anal 29:269–287

    Article  MathSciNet  Google Scholar 

  • Kuang Y (1989) Limit cycles in a chemostat related model. SIAM J Appl Math 49(6):1759–1767

    Article  MathSciNet  Google Scholar 

  • Kuang Y, Freedman HI (1988) Uniqueness of limit cycles in Gause-type models of predator–prey systems. Math Biosci 88:67–84

    Article  MathSciNet  Google Scholar 

  • LaSalle JP (1960) Some extensions of Lyapunovs second method. IRE Trans Circuit Theory CT-7:520–527

    Article  Google Scholar 

  • Lindström T (1993) Qualitative analysis of a predator-prey system with limit cycles. J Math Biol 31:541–561

    Article  MathSciNet  Google Scholar 

  • Lindström T, Cheng Y (2015) Uniqueness of limit cycles for a limiting case of the chemostat: does it justify the use of logistic growth rates. Electron J Qual Theory Differ Equ 47:1–14. http://www.math.u-szeged.hu/ejqtde

    Article  MathSciNet  Google Scholar 

  • Lindström T, Cheng Y (2016) A Rosenzweig–MacArthur (1963) criterion for the chemostat. Sci World J 2016:1–6. https://doi.org/10.1155/2016/5626980

    Article  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    MATH  Google Scholar 

  • Metz JAJ, Diekmann O (1986) The dynamics of physiologically structured populations. Springer, Berlin

    Book  Google Scholar 

  • Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. The Blackburn Press, Caldwell

    MATH  Google Scholar 

  • Rosenzweig ML (1973) Exploitation in three throphic levels. Am Nat 107(954):275–294

    Article  Google Scholar 

  • Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator–prey interactions. Am Nat 97:209–223

    Article  Google Scholar 

  • Smith HL, Waltman P (1995) The theory of the chemostat: dynamics of microbial competition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Volterra V (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem R Accad Natl Lincei 6(2):31–113

    MATH  Google Scholar 

  • Wiggins S (2003) Introduction to applied nonlinear dynamical systems and chaos, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Ye Y-Q et al (1986) Theory of limit cycles, 2nd edn. American Mathematical Society, Providence

    Google Scholar 

  • Zhang Z-f (1986) Proof of the uniqueness theorem of limit cycles of generalized Liénard equations. Appl Anal 29:63–76

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Lindström .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lindström, T. (2019). Mathematics and Recurrent Population Outbreaks. In: Sriraman, B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-70658-0_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70658-0_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70658-0

  • Online ISBN: 978-3-319-70658-0

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics