Skip to main content

Laser Interactions with Organic/Polymer Materials

  • Living reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering

Abstract

Laser light irradiation of organic or polymeric materials leads to a wide range of controlled physical and chemical modifications in the micro- and nanoscales. Laser pulses, with wavelengths from the ultraviolet to the infrared, with duration in nanosecond, picosecond, and femtosecond temporal domains, may remove material from the surface by ablation, induce swelling of the irradiated region, or generate patterns of different sizes and geometries, using methods which involve multiple laser beams or nanoparticle-mediated effects. Laser-induced chemical modifications of organic or polymeric substrates are at the basis of very important and technologically relevant processes such as laser lithography, fabrication of nanocomposites, or 3D photopolymerization. Laser irradiation also serves for transferring organic and polymeric materials from bulk to thin films, and different advanced techniques have been applied, or specifically developed, for polymeric soft, light-sensitive materials, as is the case of pulsed laser deposition, laser-induced forward transfer, or matrix-assisted methods. This chapter introduces the most important laser irradiation and laser transfer techniques that are nowadays applied to organic and polymeric materials, describes some of the attempts to interpret and model the main underlying mechanisms, and reviews relevant applications of the laser-modified substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agranat MB, Krasyuk IK, Novikov NP, Perminov VP, Yudin YI, Yampol’skii PA (1973) Mechanical damage in polymers caused by laser pulses. Polym Mech 7:389

    Article  ADS  Google Scholar 

  • Alamri S, Lasagni AF (2017) Development of a general model for direct laser interference patterning of polymers. Opt Express 25:9603

    Article  ADS  Google Scholar 

  • Alamri S, Aguilar-Morales AI, Lasagni AF (2018) Controlling the wettability of polycarbonate substrates by producing hierarchical structures using Direct Laser Interference Patterning. Eur Polym J 99:27

    Article  Google Scholar 

  • Alexandrov A, Smirnova L, Yakimovich N, Sapogova N, Soustov L, Kirsanov A, Bityurin N (2005) UV-initiated growth of gold nanoparticles in PMMA matrix. Appl Surf Sci 248:181

    Article  ADS  Google Scholar 

  • Almeida JM, Avila OI, Andrade MB, Stefanelo JC, Otuka AJ, Paula KT, Balogh DT, Mendonça CR (2019) Micropatterning of poly(p-phenylene vinylene) by femtosecond laser induced forward transfer. Polym Int 68:160

    Article  Google Scholar 

  • Andrew JE, Dyer PE, Forster D, Key PH (1983) Direct etching of polymeric materials using a XeCl laser. Appl Phys Lett 43:717

    Article  ADS  Google Scholar 

  • Anglos D, Stassinopoulos A, Das RN, Zacharakis G, Psyllaki M, Jakubiak R, Vaia RA, Giannelis EP, Anastasiadis SH (2004) Random laser action in organic–inorganic nanocomposites. J Opt Soc Am B 21:208

    Article  ADS  Google Scholar 

  • Arenholz E, Svorcik V, Kefer T, Heitz J, Bäuerle D (1991) Structure formation in UV-laser ablated poly-ethylene-terephthalate (PET). Appl Phys A 53:330

    Article  ADS  Google Scholar 

  • Arenholz E, Wagner M, Heitz J, Bäuerle D (1992) Structure formation in UV-laser-ablated polyimide foils. Appl Phys A 55:119

    Google Scholar 

  • Arif S, Armbruster O, Kautek W (2013) Pulse laser particulate separation from polycarbonate: surface acoustic wave and thermomechanical mechanisms. Appl Phys A 111:539

    Article  ADS  Google Scholar 

  • Arnold N (2008) Influence of the substrate, metal overlayer and lattice neighbors on the focusing properties of colloidal microspheres. Appl Phys A 92:1005

    Article  ADS  Google Scholar 

  • Arnold N, Bityurin N (1999) Model for laser-induced thermal degradation and ablation of polymers. Appl Phys A 68:615

    Article  ADS  Google Scholar 

  • Arnold N, Luk’yanchuk B, Bityurin N (1998) A fast quantitative modelling of ns laser ablation based on non-stationary averaging technique. Appl Surf Sci 127–129:184

    Article  ADS  Google Scholar 

  • Arnold CB, Serra P, Piqué A (2007) Laser Direct-Write Techniques for Printing of Complex Materials. MRS Bull 32:23

    Article  Google Scholar 

  • Avila OI, Santos MV, Shimizu FM, Almeida GFB, Siqueir JP, Andrade MB, Balogh DT, Ribeiro SJL, Mendonca CR (2018) Direct Femtosecond Laser Printing of PPV on Bacterial Cellulose-Based Paper for Flexible Organic Devices. Macromol Mater Eng 303:1800265

    Article  Google Scholar 

  • Babu SV, D’Couto GC, Egitto FD (1992) Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene. J Appl Phys 72:692

    Article  ADS  Google Scholar 

  • Ball Z, Hopp B, Csete M, Ignácz F, Rácz B, Sauerbrey R, Szabó G (1995) Transient optical properties of excimer-laser-irradiated polyimide. Appl Phys A 61:547

    Article  ADS  Google Scholar 

  • Baset F, Popov K, Villafranca A, Guay J-M, Al-Rekabi Z, Pelling AE, Ramunno L, Bhardwaj R (2013) Femtosecond laser induced surface swelling in poly-methyl methacrylate. Opt Express 21:12527

    Article  ADS  Google Scholar 

  • Baudach S, Bonse J, Kautek W (1999) Ablation experiments on polyimide with femtosecond laser pulses. Appl Phys A 69:S395

    Article  ADS  Google Scholar 

  • Baudach S, Bonse J, Krüger J, Kautek W (2000) Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Appl Surf Sci 154–155:555

    Article  ADS  Google Scholar 

  • Baudach S, Krüger J, Kautek W (2001) Femtosecond Laser Processing of Soft Materials. Rev Laser Eng 29:705

    Article  Google Scholar 

  • Bäuerle D (2000) Laser processing and chemistry. Springer, Berlin

    Book  Google Scholar 

  • Beinhorn F, Ihlemann J, Luther K, Troe J (2004) Plasma effects in picosecond-femtosecond UV laser ablation of polymers. Appl Phys A 79:869

    Article  ADS  Google Scholar 

  • Birnbaum M (1965) Semiconductor Surface Damage Produced by Ruby Lasers. J Appl Phys 36:3688

    Article  ADS  MathSciNet  Google Scholar 

  • Bityurin N (1999) UV etching accompanied by modifications. Surface etching. Appl Surf Sci 138–139:354

    Article  ADS  Google Scholar 

  • Bityurin N (2005) Studies on laser ablation of polymers. Annu Rep Sect C Phys Chem 101:216

    Article  Google Scholar 

  • Bityurin N (2009) Model for laser swelling of a polymer film. Appl Surf Sci 255:9851

    Article  ADS  Google Scholar 

  • Bityurin NM (2014) Laser nanostructuring of polymers. In: Springer series in materials science. Springer, Berlin/Heidelberg

    Google Scholar 

  • Bityurin N, Malyshev A (2002) Bulk photothermal model for laser ablation of polymers by nanosecond and subpicosecond pulses. J Appl Phys 92:605

    Article  ADS  Google Scholar 

  • Bityurin N, Muraviov S, Alexandrov A, Malyshev A (1997) UV laser modifications and etching of polymer films (PMMA) below the ablation threshold. Appl Surf Sci 109–110:270

    Article  ADS  Google Scholar 

  • Bityurin N, Luk’yanchuk BS, Hong MH, Chong TC (2003) Models for Laser Ablation of Polymers. Chem Rev 103:519

    Article  Google Scholar 

  • Bityurin N, Alexandrov A, Afanasiev A, Agareva N, Pikulin A, Sapogova N, Soustov L, Salomatina E, Gorshkova E, Tsverova N, Smirnova L (2013) Photoinduced nanocomposites—creation, modification, linear and nonlinear optical properties. Appl Phys A 112:135

    Article  ADS  Google Scholar 

  • Blanchet GB, Shah SI (1993) Deposition of polytetrafluoroethylene films by laser ablation. Appl Phys Lett 62:1026

    Article  ADS  Google Scholar 

  • Bloisi F, Cassinese A, Papa R, Vicari L, Califano V (2008) Matrix-Assisted Pulsed Laser Evaporation of polythiophene films. Thin Solid Films 516:1594

    Article  ADS  Google Scholar 

  • Bolle M, Lazare S, Le Blanc M, Wilmes A (1992) Submicron periodic structures produced on polymer surfaces with polarized excimer laser ultraviolet radiation. Appl Phys Lett 60:674

    Article  ADS  Google Scholar 

  • Bounos G, Selimis A, Georgiou S, Rebollar E, Castillejo M, Bityurin N (2006) Dependence of ultraviolet nanosecond laser polymer ablation on polymer molecular weight: Poly(methyl methacrylate) at 248nm. J Appl Phys 100:114323

    Article  ADS  Google Scholar 

  • Brannon JH (1989) Micropatterning of surfaces by excimer laser projection. J Vac Sci Technol B 7:1064

    Article  Google Scholar 

  • Cain SR (1993) A photothermal model for polymer ablation: chemical modification. J Phys Chem 97:7572

    Article  Google Scholar 

  • Cain SR, Burns FC, Otis CE (1992) On single‐photon ultraviolet ablation of polymeric materials. J Appl Phys 71:4107

    Article  ADS  Google Scholar 

  • Caricato AP, Lomascolo M, Luches A, Mandoj F, Manera MG, Mastroianni M, Martino M, Paolesse R, Rella R, Romano F, Tunno T, Valerini D (2008) MAPLE deposition of methoxy Ge triphenylcorrole thin films. Appl Phys A 93:651

    Article  ADS  Google Scholar 

  • Caricato AP, Cesaria M, Gigli G, Loiudice A, Luches A, Martino M, Resta V, Rizzo A, Taurino A (2012) Poly-(3-hexylthiophene)/[6,6]-phenyl-C61-butyric-acid-methyl-ester bilayer deposition by matrix-assisted pulsed laser evaporation for organic photovoltaic applications. Appl Phys Lett 100:073306

    Article  ADS  Google Scholar 

  • Castillejo M, Rebollar E, Oujja M, Sanz M, Selimis A, Sigletou M, Psycharakis S, Ranella A, Fotakis C (2012) Fabrication of porous biopolymer substrates for cell growth by UV laser: The role of pulse duration. Appl Surf Sci 258:8919

    Article  ADS  Google Scholar 

  • Chalupský J, Juha L, Hájková V, Cihelka J, Vyšĺn L, Gautier J, Hajdu J, Hau-Riege SP, Jurek M, Krzywinski J, London RA, Papalazarou E, Pelka JB, Rey G, Sebban S, Sobierajski R, Stojanovic N, Tiedtke K, Toleikis S, Tschentscher T, Valentin C, Wabnitz H, Zeitoun P (2009) Non-thermal desorption/ablation of molecular solids induced by ultra-short soft x-ray pulses. Opt Express 17:208

    Article  ADS  Google Scholar 

  • Charlot V, Ibrahim A, Allonas X, Croutxé-Barghorn C, Delaite C (2014) Photopolymerization of methyl methacrylate: effects of photochemical and photonic parameters on the chain length. Polym Chem 5:6236

    Article  Google Scholar 

  • Cheptsov VS, Churbanova ES, Yusupov VI, Gorlenko MV, Lysak LV, Minaev NV, Bagratashvili VN, Chichkov BN (2018) Laser printing of microbial systems: effect of absorbing metal film. Lett Appl Microbiol 67:544

    Article  Google Scholar 

  • Chii-Rong Y, Yu-Sheng H, Guang-Yeu H, Yu-Der L (2004) Photoablation characteristics of novel polyimides synthesized for high-aspect-ratio excimer laser LIGA process. J Micromech Microeng 14:480

    Article  Google Scholar 

  • Chrisey DB, Piqué A, McGill RA, Horwitz JS, Ringeisen BR, Bubb DM, Wu PK (2003) Laser Deposition of Polymer and Biomaterial Films. Chem Rev 103:553

    Article  Google Scholar 

  • Chu F, Yan S, Zheng J, Zhang L, Zhang H, Yu K, Sun X, Liu A, Huang Y (2018) A Simple Laser Ablation-Assisted Method for Fabrication of Superhydrophobic SERS Substrate on Teflon Film. Nanoscale Res Lett 13:244

    Article  ADS  Google Scholar 

  • Coloff SG, Vanderborgh NE (1973) Time-Resolved Laser Induced Degradation of Polystyrene. Anal Chem 45:1507

    Article  Google Scholar 

  • Conforti PF, Prasad M, Garrison BJ (2007a) Effects of thermal energy deposition on material ejection in poly(methyl methacrylate). Appl Surf Sci 253:6386

    Article  ADS  Google Scholar 

  • Conforti PF, Prasad M, Garrison BJ (2007b) Effects of thermal energy deposition on material ejection in poly(methyl methacrylate). J Phys Chem C 111:12024

    Article  Google Scholar 

  • Conforti PF, Prasad M, Garrison BJ (2008a) Elucidating the Thermal, Chemical, and Mechanical Mechanisms of Ultraviolet Ablation in Poly(methyl methacrylate) via Molecular Dynamics Simulations. Acc Chem Res 41:915

    Article  Google Scholar 

  • Conforti PF, Prasad M, Garrison BJ (2008b) The impact of point thermal absorbers in ablation of poly(methyl methacrylate). Appl Phys A 92:1037

    Article  ADS  Google Scholar 

  • Couris S, Hatziapostolou A, Anglos D, Mavromanolakis A, Fotakis C (1996) Laser Induced Breakdown Spectroscopy (LIBS): Applications in environmental issues. Proc SPIE Int Soc Opt Eng 2965:83

    ADS  Google Scholar 

  • Cozzens RF, Fox RB (1978) Infrared laser ablation of polymers. Polym Eng Sci 18:900

    Article  Google Scholar 

  • Cristescu R, Stamatin I, Mihaiescu DE, Ghica C, Albulescu M, Mihailescu IN, Chrisey DB (2004a) Pulsed laser deposition of biocompatible polymers: a comparative study in case of pullulan. Thin Solid Films 453–454:262

    Article  Google Scholar 

  • Cristescu R, Mihaiescu D, Socol G, Stamatin I, Mihailescu IN, Chrisey DB (2004b) Deposition of biopolymer thin films by matrix assisted pulsed laser evaporation. Appl Phys A 79:1023

    Article  ADS  Google Scholar 

  • Cristescu R, Dorcioman G, Ristoscu C, Axente E, Grigorescu S, Moldovan A, Mihailescu IN, Kocourek T, Jelinek M, Albulescu M, Buruiana T, Mihaiescu D, Stamatin I, Chrisey DB (2006) Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems. Appl Surf Sci 252:4647

    Article  ADS  Google Scholar 

  • Cui J, Rodríguez-Rodríguez Á, Hernández M, García-Gutiérrez M-C, Nogales A, Castillejo M, Moseguí González D, Müller-Buschbaum P, Ezquerra TA, Rebollar E (2016) Laser-induced periodic surface structures on P3HT and on its photovoltaic blend with PC71BM. ACS Appl Mater Interfaces 8:31894

    Article  Google Scholar 

  • Cui J, Nogales A, Ezquerra TA, Rebollar E (2017) Influence of substrate and film thickness on polymer LIPSS formation. Appl Surf Sci 394:125

    Article  ADS  Google Scholar 

  • Dajun Y, Andrés L, Jeffrey LH, David CM, Suman D (2012) Patterning of periodic nano-cavities on PEDOT–PSS using nanosphere-assisted near-field optical enhancement and laser interference lithography. Nanotechnology 23:015304

    Article  Google Scholar 

  • Delle Side D, Caricato AP, Krása J, Nassisi V (2018) Target charging during laser ablation of polyethylene. Appl Phys A 124:138

    Article  ADS  Google Scholar 

  • Denk R, Piglmayer K, Bäuerle D (2002) Laser-induced nanopatterning of PET using a-SiO2 microspheres. Appl Phys A 74:825

    Article  ADS  Google Scholar 

  • Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444

    Article  ADS  Google Scholar 

  • Deutsch TF, Geis MW (1983) Self‐developing UV photoresist using excimer laser exposure. J Appl Phys 54:7201

    Article  ADS  Google Scholar 

  • Dhanumalayan E, Joshi GM (2018) Performance properties and applications of polytetrafluoroethylene (PTFE)—a review. Adv Compos Hybrid Mater 1:247

    Article  Google Scholar 

  • Dinca V, Ranella A, Farsari M, Kafetzopoulos D, Dinescu M, Popescu A, Fotakis C (2008) Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer. Biomed Microdevices 10:719

    Article  Google Scholar 

  • Dinca V, Zaharie-Butucel D, Stanica L, Brajnicov S, Marascu V, Bonciu A, Cristocea A, Gaman L, Gheorghiu M, Astilean S, Vasilescu A (2018) Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme. Colloids Surf B: Biointerfaces 162:98

    Article  Google Scholar 

  • Doraiswamy A, Narayan RJ, Lippert T, Urech L, Wokaun A, Nagel M, Hopp B, Dinescu M, Modi R, Auyeung RCY, Chrisey DB (2006) Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer. Appl Surf Sci 252:4743

    Article  ADS  Google Scholar 

  • Dunn DS, Ouderkirk AJ (1990) Chemical and physical properties of laser-modified polymers. Macromolecules 23:770

    Article  ADS  Google Scholar 

  • Dvornikov AS, Rentzepis PM (1997) Novel organic ROM materials for optical 3D memory devices. Opt Commun 136:1

    Article  ADS  Google Scholar 

  • Dyer PE (2003) Excimer laser polymer ablation: twenty years on. Appl Phys A 77:167

    Article  ADS  Google Scholar 

  • Englert L, Wollenhaupt M, Sarpe C, Otto D, Baumert T (2012) Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses. J Laser Appl 24:042002

    Article  Google Scholar 

  • Fardel R, Nagel M, Nüesch F, Lippert T, Wokaun A (2007) Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer. Appl Phys Lett 91:061103

    Article  ADS  Google Scholar 

  • Fardel R, McLeod E, Tsai Y-C, Arnold CB (2010) Nanoscale ablation through optically trapped microspheres. Appl Phys A 101:41

    Article  ADS  Google Scholar 

  • Farsari M, Chichkov BN (2009) Two-photon fabrication. Nat Photonics 3:450

    Article  ADS  Google Scholar 

  • Farsari M, Ovsianikov A, Vamvakaki M, Sakellari I, Gray D, Chichkov BN, Fotakis C (2008) Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore. Appl Phys A 93:11

    Article  ADS  Google Scholar 

  • Fischer J, von Freymann G, Wegener M (2010) The Materials Challenge in Diffraction-Unlimited Direct-Laser-Writing Optical Lithography. Adv Mater 22:3578

    Article  Google Scholar 

  • Fourrier T, Schrems G, Mühlberger T, Heitz J, Arnold N, Bäuerle D, Mosbacher M, Boneberg J, Leiderer P (2001) Laser cleaning of polymer surfaces. Appl Phys A 72:1

    Article  ADS  Google Scholar 

  • Frank P, Lang F, Mosbacher M, Boneberg J, Leiderer P (2008) Infrared steam laser cleaning. Appl Phys A 93:1

    Article  ADS  Google Scholar 

  • Frolov IA, Allayarov SR, Kalinin LA, Dixon DA, Tolstopyatov EM, Grakovich PN, Ivanov LF (2018) Impact of γ-Irradiation on the Kinetics of Laser Ablation of Polyamide Under Continuous CO2 Laser Beam. J Russ Laser Res 39:98

    Article  Google Scholar 

  • Fukumura H, Kohji Y, Masuhara H (1996) Laser implantation of fluorescent molecules into polymer films. Appl Surf Sci 96–98:569

    Article  ADS  Google Scholar 

  • Fukumura H, Uji-i H, Banjo H, Masuhara H, Karnakis DM, Ichinose N, Kawanishi S, Uchida K, Irie M (1998) Laser implantation of photochromic molecules into polymer films: a new approach towards molecular device fabrication. Appl Surf Sci 127–129:761

    Article  ADS  Google Scholar 

  • Gaspard S, Oujja M, Rebollar E, Walczak M, Díaz L, Santos M, Castillejo M (2007) IR laser ablation of doped poly(methyl methacrylate). Appl Surf Sci 253:6442

    Article  ADS  Google Scholar 

  • Geldhauser T, Ziese F, Merkt F, Erbe A, Boneberg J, Leiderer P (2007) Acoustic laser cleaning of silicon surfaces. Appl Phys A 89:109

    Article  ADS  Google Scholar 

  • Gonzalo J, Dyer PE, Snelling HV, Hird M (1999) Liquid crystal films grown by pulsed laser deposition. Appl Surf Sci 138–139:179

    Article  ADS  Google Scholar 

  • Grant Norton M, Jiang W, Thomas Dickinson J, Hipps KW (1996) Pulsed laser ablation and deposition of fluorocarbon polymers. Appl Surf Sci 96–98:617

    Article  ADS  Google Scholar 

  • Gross ME, Appelbaum A, Gallagher PK (1987) Laser direct‐write metallization in thin palladium acetate films. J Appl Phys 61:1628

    Article  ADS  Google Scholar 

  • Guha S, Adil D, Ukah NB, Gupta RK, Ghosh K (2011) MAPLE-deposited polymer films for improved organic device performance. Appl Phys A 105:547

    Article  ADS  Google Scholar 

  • Gumpenberger T, Heitz J, Bäuerle D, Kahr H, Graz I, Romanin C, Svorcik V, Leisch F (2003) Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene. Biomaterials 24:5139

    Article  Google Scholar 

  • Gumpenberger T, Heitz J, Bäuerle D, Rosenmayer TC (2005) Modification of expanded polytetrafluoroethylene by UV irradiation in reactive and inert atmosphere. Appl Phys A 80:27

    Article  ADS  Google Scholar 

  • Guo L, Jiang H-B, Shao R-Q, Zhang Y-L, Xie S-Y, Wang J-N, Li X-B, Jiang F, Chen Q-D, Zhang T, Sun H-B (2012a) Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50:1667

    Article  Google Scholar 

  • Guo Y, Morozov A, Schneider D, Chung JW, Zhang C, Waldmann M, Yao N, Fytas G, Arnold CB, Priestley RD (2012b) Ultrastable nanostructured polymer glasses. Nat Mater 11:337

    Article  ADS  Google Scholar 

  • Hagemeyer A, Hibst H, Heitz J, Bauerle D (1994) Improvements of the peel test for adhesion evaluation of thin metallic films on polymeric substrates. J Adhes Sci Technol 8:29

    Article  Google Scholar 

  • Hanada Y, Sugioka K, Kawano H, Tsuchimoto T, Miyamoto I, Miyawaki A, Midorikawa K (2009) Selective cell culture on UV transparent polymer by F2 laser surface modification. Appl Surf Sci 255:9885

    Article  ADS  Google Scholar 

  • Hansen SG, Robitaille TE (1988a) Formation of polymer films by pulsed laser evaporation. Appl Phys Lett 52:81

    Article  ADS  Google Scholar 

  • Hansen SG, Robitaille TE (1988b) Arrival time measurements of films formed by pulsed laser evaporation of polycarbonate and selenium. J Appl Phys 64:2122

    Article  ADS  Google Scholar 

  • Hayashi T, Shibata T, Kawashima T, Makino E, Mineta T, Masuzawa T (2008) Photolithography system with liquid crystal display as active gray-tone mask for 3D structuring of photoresist. Sensors Actuators A Phys 144:381

    Article  Google Scholar 

  • Hopp B, Smausz T, Kresz N, Barna N, Bor Z, Kolozsvári L, Chrisey DB, Szabó A, Nógrádi A (2005a) Survival and Proliferative Ability of Various Living Cell Types after Laser-Induced Forward Transfer. Tissue Eng 11:1817

    Article  Google Scholar 

  • Hopp B, Smausz T, Barna N, Cs V, Zs A, Kredics L, Chrisey D (2005b) Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia. J Phys D Appl Phys 38:833

    Article  ADS  Google Scholar 

  • Hopp B, Smausz T, Kecskeméti G, Klini A, Bor Z (2007) Femtosecond pulsed laser deposition of biological and biocompatible thin layers. Appl Surf Sci 253:7806

    Article  ADS  Google Scholar 

  • Hopp B, Smausz T, Papdi B, Bor Z, Szabó A, Kolozsvári L, Fotakis C, Nógrádi A (2008) Laser-based techniques for living cell pattern formation. Appl Phys A 93:45

    Article  ADS  Google Scholar 

  • Huang Y-H, Wu M-N, Song C-W, Zhang J-J, Sun T, Jiang L (2018) Simulation and experimental investigations of thermal degradation of polystyrene under femtosecond laser ablation. Appl Phys A 124:797

    Article  ADS  Google Scholar 

  • Jelinek M, Cristescu R, Axente E, Kocourek T, Dybal J, Remsa J, Plestil J, Mihaiescu D, Albulescu M, Buruiana T, Stamatin I, Mihailescu IN, Chrisey DB (2007) Matrix assisted pulsed laser evaporation of cinnamate-pullulan and tosylate-pullulan polysaccharide derivative thin films for pharmaceutical applications. Appl Surf Sci 253:7755

    Article  ADS  Google Scholar 

  • Jeong H, Chowdhury M, Wang Y, Sezen-Edmonds M, Loo Y-L, Register RA, Arnold CB, Priestley RD (2018) Tuning Morphology and Melting Temperature in Polyethylene Films by MAPLE. Macromolecules 51:512

    Article  ADS  Google Scholar 

  • Jiang J, Callender CL, Noad JP, Walker RB, Mihailov SJ, Ding J, Day M (2004) All-polymer photonic devices using excimer laser micromachining. IEEE Photon Technol Lett 16:509

    Article  ADS  Google Scholar 

  • Johnson SL, Schriver KE, Haglund RF, Bubb DM (2009a) Effects of the absorption coefficient on resonant infrared laser ablation of poly(ethylene glycol). J Appl Phys 105:024901

    Article  ADS  Google Scholar 

  • Johnson SL, Bubb DM, Haglund RF (2009b) Phase explosion and recoil-induced ejection in resonant-infrared laser ablation of polystyrene. Appl Phys A 96:627

    Article  ADS  Google Scholar 

  • Kallepalli DLN, Alshehri AM, Marquez DT, Andrzejewski L, Scaiano JC, Bhardwaj R (2016) Ultra-high density optical data storage in common transparent plastics. Sci Rep 6:26163

    Article  ADS  Google Scholar 

  • Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935

    Article  Google Scholar 

  • Kattamis NT, Purnick PE, Weiss R, Arnold CB (2007) Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl Phys Lett 91:171120

    Article  ADS  Google Scholar 

  • Kawamura Y, Toyoda K, Namba S (1982) Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser. Appl Phys Lett 40:374

    Article  ADS  Google Scholar 

  • Klok H-A, Lecommandoux S (2001) Supramolecular Materials via Block Copolymer Self-Assembly. Adv Mater 13:1217

    Article  Google Scholar 

  • Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109:1855

    Article  Google Scholar 

  • Krüger J, Martin S, Mädebach H, Urech L, Lippert T, Wokaun A, Kautek W (2005) Femto- and nanosecond laser treatment of doped polymethylmethacrylate. Appl Surf Sci 247:406

    Article  ADS  Google Scholar 

  • Kunze T, Zwahr C, Krupop B, Alamri S, Rößler F, Lasagni AF (2017) Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities. SPIE LASE, SPIE 10092:7

    Google Scholar 

  • Küper S, Stuke M (1987) Femtosecond uv excimer laser ablation. Appl Phys B 44:199

    Article  ADS  Google Scholar 

  • Küper S, Stuke M (1989) UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: Characterization of incubation sites with Fourier transform IR- and UV-Spectroscopy. Appl Phys A 49:211

    Article  ADS  Google Scholar 

  • Küper S, Brannon J, Brannon K (1993) Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling. Appl Phys A 56:43

    Article  ADS  Google Scholar 

  • Kwong HY, Wong MH, Wong YW, Wong KH (2007) Superhydrophobicity of polytetrafluoroethylene thin film fabricated by pulsed laser deposition. Appl Surf Sci 253:8841

    Article  ADS  Google Scholar 

  • Lai ND, Zheng TS, Do DB, Lin JH, Hsu CC (2010) Fabrication of desired three-dimensional structures by holographic assembly technique. Appl Phys A 100:171

    Article  ADS  Google Scholar 

  • Lang F, Mosbacher M, Leiderer P (2003) Near field induced defects and influence of the liquid layer thickness in Steam Laser Cleaning of silicon wafers. Appl Phys A 77:117

    Article  ADS  Google Scholar 

  • Lang V, Roch T, Lasagni AF (2016) High-Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2 min−1 Fabrication Speed Barrier. Adv Eng Mater 18:1342

    Article  Google Scholar 

  • Lasagni AF, Acevedo DF, Barbero CA, Mücklich F (2007) One-Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning. Adv Eng Mater 9:99

    Article  Google Scholar 

  • Lasagni AF, Acevedo DF, Barbero CA, Mücklich F (2008) Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning. Appl Phys A 91:369

    Article  ADS  Google Scholar 

  • Lasagni AF, Gachot C, Trinh KE, Hans M, Rosenkranz A, Roch T, Eckhardt S, Kunze T, Bieda M, Günther D, Lang V, Mücklich F (2017) Direct laser interference patterning, 20 years of development: from the basics to industrial applications. SPIE LASE, SPIE 10092:11

    Google Scholar 

  • Lazare S, Benet P (1993) Surface amorphization of Mylar(R) films with the excimer laser radiation above and below ablation threshold: Ellipsometric measurements. J Appl Phys 74:4953

    Article  ADS  Google Scholar 

  • Lazare S, Tokarev V, Sionkowska A, Wiśniewski M (2005) Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime. Appl Phys A 81:465

    Article  ADS  Google Scholar 

  • Lazare S, Elaboudi I, Castillejo M, Sionkowska A (2010) Model properties relevant to laser ablation of moderately absorbing polymers. Appl Phys A 101:215

    Article  ADS  Google Scholar 

  • Lei W, Mittal K (2018) Laser surface modification for adhesion enhancement. In: Mittal K, Lei W (eds) Laser technology: applications in adhesion and related areas. Wiley, Hoboken

    Google Scholar 

  • Lemoine P, Blau W, Drury A, Keely C (1993) Molecular weight effects on the 248-nm photoablation of polystyrene spun films. Polymer 34:5020

    Article  Google Scholar 

  • Leveugle E, Zhigilei LV (2007) Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J Appl Phys 102:074914

    Article  ADS  Google Scholar 

  • Li ST, Arenholz E, Heitz J, Bäuerle D (1998) Pulsed-laser deposition of crystalline Teflon (PTFE) films. Appl Surf Sci 125:17

    Article  ADS  Google Scholar 

  • Li C-F, Dong X-Z, Jin F, Jin W, Chen W-Q, Zhao Z-S, Duan X-M (2007) Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization. Appl Phys A 89:145

    Article  ADS  Google Scholar 

  • Lippert T (2004) Laser application of polymers. In: Lippert TK (ed) Polymers and light. Springer, Berlin Heidelberg

    Chapter  Google Scholar 

  • Lippert T (2005) Interaction of Photons with Polymers: From Surface Modification to Ablation. Plasma Process Polym 2:525

    Article  Google Scholar 

  • Lippert T (2010) UV laser ablation of polymers: from structuring to thin film deposition. In: Miotello A, Ossi PM (eds) Laser-surface interactions for new materials production: tailoring structure and properties. Springer, Berlin/Heidelberg

    Google Scholar 

  • Lippert T, Dickinson JT (2003) Chemical and Spectroscopic Aspects of Polymer Ablation: Special Features and Novel Directions. Chem Rev 103:453

    Article  Google Scholar 

  • Luk’yanchuk B, Bityurin N, Arnold N, Bäuerle D (1996) The role of excited species in ultraviolet-laser materials ablation III. Non-stationary ablation of organic polymers. Appl Phys A 62:397

    Article  ADS  Google Scholar 

  • Luk’yanchuk BS, Song WD, Wang ZB, Hong MH, Chong TC, Graf J, Mosbacher M, Leiderer P (2007) New methods for laser cleaning of nanoparticles. In: Phipps C (ed) Laser ablation and its applications. Springer US, Boston

    Google Scholar 

  • Luo H, Li Y, Cui H-B, Yang H, Gong Q-H (2009) Dielectric-loaded surface plasmon–polariton nanowaveguides fabricated by two-photon polymerization. Appl Phys A 97:709

    Article  ADS  Google Scholar 

  • Mahan GD, Cole HS, Liu YS, Philipp HR (1988) Theory of polymer ablation. Appl Phys Lett 53:2377

    Article  ADS  Google Scholar 

  • Maiman TH (1960) Stimulated Optical Radiation in Ruby. Nature 187:493

    Article  ADS  Google Scholar 

  • Manoravi P, Joseph M, Sivakumar N (1998) Pulsed laser ablation —thin film deposition of polyethylene oxide. J Phys Chem Solids 59:1271

    Article  ADS  Google Scholar 

  • Martínez-Tong DE, Rodríguez-Rodríguez Á, Nogales A, García-Gutiérrez M-C, Pérez-Murano F, Llobet J, Ezquerra TA, Rebollar E (2015) Laser fabrication of polymer ferroelectric nanostructures for nonvolatile organic memory devices. ACS Appl Mater Interfaces 7:19611

    Article  Google Scholar 

  • Martín-Fabiani I, Rebollar E, Pérez S, Rueda DR, García-Gutiérrez MC, Szymczyk A, Roslaniec Z, Castillejo M, Ezquerra TA (2012) Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films. Langmuir 28:7938

    Article  Google Scholar 

  • Martín-Fabiani I, Rebollar E, García-Gutiérrez MC, Rueda DR, Castillejo M, Ezquerra TA (2015) Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle x-ray scattering. ACS Appl Mater Interfaces 7:3162

    Article  Google Scholar 

  • Martino M, Caricato AP, Romano F, Tunno T, Valerini D, Anni M, Caruso ME, Romano A, Verri T (2009) Pulsed laser deposition of organic and biological materials. J Mater Sci Mater Electron 20:435

    Article  Google Scholar 

  • Masubuchi T, Furutani H, Fukumura H, Masuhara H (2001) Laser-Induced Nanometer−Nanosecond Expansion and Contraction Dynamics of Poly(methyl methacrylate) Film Studied by Time-Resolved Interferometry. J Phys Chem B 105:2518

    Article  Google Scholar 

  • Mate CM, Toney MF, Leach KA (2001) Roughness of thin perfluoropolyether lubricant films: influence on disk drive technology. IEEE Trans Magn 37:1821

    Article  ADS  Google Scholar 

  • Matsumoto N, Shima H, Fujii T, Kannari F (1997) Organic electroluminescence cells based on thin films deposited by ultraviolet laser ablation. Appl Phys Lett 71:2469

    Article  ADS  Google Scholar 

  • Mauclair C, Zamfirescu M, Colombier JP, Cheng G, Mishchik K, Audouard E, Stoian R (2012) Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes. Opt Express 20:12997

    Article  ADS  Google Scholar 

  • McGill RA, Chrisey DB (2000) USPatent 6,025,036

    Google Scholar 

  • McLeod E, Arnold CB (2008) Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat Nanotechnol 3:413

    Article  Google Scholar 

  • Mercado AL, Allmond CE, Hoekstra JG, Fitz-Gerald JM (2005) Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films. Appl Phys A 81:591

    Article  ADS  Google Scholar 

  • Mikulikova R, Moritz S, Gumpenberger T, Olbrich M, Romanin C, Bacakova L, Svorcik V, Heitz J (2005) Cell microarrays on photochemically modified polytetrafluoroethylene. Biomaterials 26:5572

    Article  Google Scholar 

  • Murahara M, Toyoda K (1995) Excimer laser-induced photochemical modification and adhesion improvement of a fluororesin surface. J Adhes Sci Technol 9:1601

    Article  Google Scholar 

  • Naessens K, Ottevaere H, Baets R, Van Daele P, Thienpont H (2003) Direct writing of microlenses in polycarbonate with excimer laser ablation. Appl Opt 42:6349

    Article  ADS  Google Scholar 

  • Nagel M, Fardel R, Feurer P, Häberli M, Nüesch FA, Lippert T, Wokaun A (2008) Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior. Appl Phys A 92:781

    Article  ADS  Google Scholar 

  • Niehaus M, Soltwisch J (2018) New insights into mechanisms of material ejection in MALDI mass spectrometry for a wide range of spot sizes. Sci Rep 8:7755

    Article  ADS  Google Scholar 

  • Niino H, Yabe A (1996) Chemical surface modification of fluorocarbon polymers by excimer laser processing. Appl Surf Sci 96–98:550

    Article  ADS  Google Scholar 

  • Niino H, Yabe A (1998) Surface Modification of Fluorocarbon Polymer using Phenylhydrazine Photolyzed by KrF Excimer Laser Irradiation. J Photopolym Sci Technol 11:357

    Article  Google Scholar 

  • Niino H, Okano H, Inui K, Yabe A (1997) Surface modification of poly(tetrafluoroethylene) by excimer laser processing: enhancement of adhesion. Appl Surf Sci 109–110:259

    Article  ADS  Google Scholar 

  • Nishio S, Chiba T, Matsuzaki A, Sato H (1996) Control of structures of deposited polymer films by ablation laser wavelength: Polyacrylonitrile at 308, 248, and 193 nm. J Appl Phys 79:7198

    Article  ADS  Google Scholar 

  • Okoshi M, Inoue N (2004) Laser ablation of polymers using 395 nm and 790 nm femtosecond lasers. Appl Phys A 79:841

    Article  ADS  Google Scholar 

  • Olbrich M, Rebollar E, Heitz J, Frischauf I, Romanin C (2008) Electroporation chip for adherent cells on photochemically modified polymer surfaces. Appl Phys Lett 92:013901

    Article  ADS  Google Scholar 

  • Oldershaw GA (1991) Excimer laser ablation of polyethylene terephthalate. Prediction of threshold fluences from thermolysis rates. Chem Phys Lett 186:23

    Article  ADS  Google Scholar 

  • Palla-Papavlu A, Dinca V, Dinescu M, Di Pietrantonio F, Cannatà D, Benetti M, Verona E (2011) Matrix-assisted pulsed laser evaporation of chemoselective polymer. Appl Phys A 105:651

    Article  ADS  Google Scholar 

  • Palmieri FL, Wohl CJ (2018) Topographical modification of polymers and metals by laser ablation to create Superhydrophobic surfaces. In: Mittal K, Lei W (eds) Laser technology: applications in adhesion and related areas. Wiley, Hoboken

    Google Scholar 

  • Paltauf G, Dyer PE (2003) Photomechanical Processes and Effects in Ablation. Chem Rev 103:487

    Article  Google Scholar 

  • Pan H, Hwang DJ, Ko SH, Clem TA, Fréchet JMJ, Bäuerle D, Grigoropoulos CP (2010) High-Throughput Near-Field Optical Nanoprocessing of Solution-Deposited Nanoparticles. Small 6:1812

    Article  Google Scholar 

  • Papantonakis MR, Haglund RF Jr (2004) Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene). Appl Phys A 79:1687

    Article  ADS  Google Scholar 

  • Park SH, Lim TW, Yang D-Y, Cho NC, Lee K-S (2006) Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique. Appl Phys Lett 89:173133

    Article  ADS  Google Scholar 

  • Paun IA, Ion V, Moldovan A, Dinescu M (2010) Thin films of polymer blends for controlled drug delivery deposited by matrix-assisted pulsed laser evaporation. Appl Phys Lett 96:243702

    Article  ADS  Google Scholar 

  • Pazokian H, Selimis A, Jalal B, Saeid J, Mahmoud M, Fotakis C, Stratakis E (2012) Tailoring the wetting properties of polymers from highly hydrophilic to superhydrophobic using UV laser pulses. J Micromech Microeng 22:035001

    Article  Google Scholar 

  • Pérez S, Rebollar E, Oujja M, Martín M, Castillejo M (2013) Laser-induced periodic surface structuring of biopolymers. Appl Phys A 110:683

    Article  ADS  Google Scholar 

  • Pfleging W, Finke S, Gaganidze E, Litfin K, Steinbock L, Heidinger R (2003) Laser-assisted fabrication of monomode polymer waveguides and their optical characterization. Mater Werkst 34:904

    Article  Google Scholar 

  • Pfleging W, Torge M, Bruns M, Trouillet V, Welle A, Wilson S (2009) Laser- and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion. Appl Surf Sci 255:5453

    Article  ADS  Google Scholar 

  • Phillips HM, Smayling MC, Sauerbrey R (1993a) Modification of electrical conductivity and surface structure in polymers using ultraviolet laser radiation. Microelectron Eng 20:73

    Article  Google Scholar 

  • Phillips HM, Wahl S, Sauerbrey R (1993b) Submicron electrically conducting wires produced in polyimide by ultraviolet laser irradiation. Appl Phys Lett 62:2572

    Article  ADS  Google Scholar 

  • Phipps CR, Luke JR, Lippert T, Hauer M, Wokaun A (2004) Micropropulsion using laser ablation. Appl Phys A 79:1385

    Article  Google Scholar 

  • Pikulin A, Bityurin N (2007) Spatial resolution in polymerization of sample features at nanoscale. Phys Rev B 75:195430

    Google Scholar 

  • Pikulin A, Bityurin N (2010) Spatial confinement of percolation: Monte Carlo modeling and nanoscale laser polymerization. Phys Rev B 82:085406

    Google Scholar 

  • Pikulin A, Afanasiev A, Agareva N, Alexandrov AP, Bredikhin V, Bityurin N (2012) Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres. Opt Express 20:9052

    Article  ADS  Google Scholar 

  • Piqué A (2011) The Matrix-Assisted Pulsed Laser Evaporation (MAPLE) process: origins and future directions. Appl Phys A 105:517

    Article  ADS  Google Scholar 

  • Piqué A, Chrisey DB, Spargo BJ, Bucaro MA, Vachet RW, Callahan JH, McGill RA, Leonhardt D, Mlsna TE (1998) Use of Matrix Assisted Pulsed Laser Evaporation (Maple) for the Growth of Organic Thin Films. MRS Proc 526:421

    Article  Google Scholar 

  • Piqué A, McGill RA, Chrisey DB, Leonhardt D, Mslna TE, Spargo BJ, Callahan JH, Vachet RW, Chung R, Bucaro MA (1999) Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique. Thin Solid Films 355–356:536

    Article  Google Scholar 

  • Piqué A, Wu P, Ringeisen BR, Bubb DM, Melinger JS, McGill RA, Chrisey DB (2002) Processing of functional polymers and organic thin films by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Appl Surf Sci 186:408

    Article  ADS  Google Scholar 

  • Popov O, Zilbershtein A, Davidov D (2006) Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength. Appl Phys Lett 89:191116

    Article  ADS  Google Scholar 

  • Prasad M, Conforti PF, Garrison BJ (2007a) On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate). J Appl Phys 101:103113

    Article  ADS  Google Scholar 

  • Prasad M, Conforti PF, Garrison BJ (2007b) Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials. J Chem Phys 127:084705

    Article  ADS  Google Scholar 

  • Prasad M, Conforti PF, Garrison BJ, Yingling YG (2007c) Computational investigation into the mechanisms of UV ablation of poly(methyl methacrylate). Appl Surf Sci 253:6382

    Article  ADS  Google Scholar 

  • Prasad M, Conforti PF, Garrison BJ (2008) Influence of photoexcitation pathways on the initiation of ablation in poly (methyl methacrylate). Appl Phys A 92:877

    Article  ADS  Google Scholar 

  • Prasad M, Conforti PF, Garrison BJ (2009) Interplay between Chemical, Thermal, and Mechanical Processes Occurring upon Laser Excitation of Poly(methyl methacrylate) and Its Role in Ablation. J Phys Chem C 113:11491

    Article  Google Scholar 

  • Preuss S, Späth M, Zhang Y, Stuke M (1993) Time resolved dynamics of subpicosecond laser ablation. Appl Phys Lett 62:3049

    Article  ADS  Google Scholar 

  • Purice A, Schou J, Kingshott P, Pryds N, Dinescu M (2007) Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE). Appl Surf Sci 253:6451

    Article  ADS  Google Scholar 

  • Qin Z, He T, Zhang Y (1998) Characteristics of the conductive polyimide film surfaces induced by ultraviolet laser beam. Appl Phys A 66:441

    Article  ADS  Google Scholar 

  • Rebollar E, Bounos G, Oujja M, Domingo C, Georgiou S, Castillejo M (2005) Influence of polymer molecular weight on the UV ablation of doped poly(methyl methacrylate). Appl Surf Sci 248:254

    Article  ADS  Google Scholar 

  • Rebollar E, Bounos G, Oujja M, Georgiou S, Castillejo M (2006a) Effect of Molecular Weight on the Morphological Modifications Induced by UV Laser Ablation of Doped Polymers. J Phys Chem B 110:16452

    Article  Google Scholar 

  • Rebollar E, Bounos G, Oujja M, Domingo C, Georgiou S, Castillejo M (2006b) Influence of Polymer Molecular Weight on the Chemical Modifications Induced by UV Laser Ablation. J Phys Chem B 110:14215

    Article  Google Scholar 

  • Rebollar E, Gaspard S, Oujja M, Villavieja MM, Corrales T, Bosch P, Georgiou S, Castillejo M (2006c) Pulsed laser deposition of polymers doped with fluorescent molecular sensors. Appl Phys A 84:171

    Article  ADS  Google Scholar 

  • Rebollar E, Bounos G, Oujja M, Georgiou S, Castillejo M (2007a) Morphological and chemical modifications and plume ejection following UV laser ablation of doped polymers: Dependence on polymer molecular weight. Appl Surf Sci 253:7820

    Article  ADS  Google Scholar 

  • Rebollar E, Oujja M, Bounos G, Kolloch A, Georgiou S, Castillejo M (2007b) Analysis of plume following ultraviolet laser ablation of doped polymers: Dependence on polymer molecular weight. J Appl Phys 101:033106

    Article  ADS  Google Scholar 

  • Rebollar E, Bounos G, Selimis A, Castillejo M, Georgiou S (2008a) Examination of the influence of molecular weight on polymer laser ablation: polystyrene at 248 nm. Appl Phys A 92:1043

    Article  ADS  Google Scholar 

  • Rebollar E, Frischauf I, Olbrich M, Peterbauer T, Hering S, Preiner J, Hinterdorfer P, Romanin C, Heitz J (2008b) Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials 29:1796

    Article  Google Scholar 

  • Rebollar E, Pérez S, Hernández JJ, Martín-Fabiani I, Rueda DR, Ezquerra TA, Castillejo M (2011) Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space. Langmuir 27:5596

    Article  Google Scholar 

  • Rebollar E, Sanz M, Perez S, Hernandez M, Martín-Fabiani I, Rueda DR, Ezquerra TA, Domingo C, Castillejo M (2012a) Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering. Phys Chem Chem Phys 14:15699

    Article  Google Scholar 

  • Rebollar E, Vázquez de Aldana JR, Pérez-Hernández JA, Ezquerra TA, Moreno P, Castillejo M (2012b) Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl Phys Lett 100:041106

    Article  ADS  Google Scholar 

  • Rebollar E, Vázquez de Aldana JR, Martín-Fabiani I, Hernández M, Rueda DR, Ezquerra TA, Domingo C, Moreno P, Castillejo M (2013) Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys Chem Chem Phys 15:11287

    Article  Google Scholar 

  • Rebollar E, Pérez S, Hernández M, Domingo C, Martín M, Ezquerra TA, García-Ruiz JP, Castillejo M (2014) Physicochemical modifications accompanying UV laser induced surface structures on poly (ethylene terephthalate) and their effect on adhesion of mesenchymal cells. Phys Chem Chem Phys 16:17551

    Article  Google Scholar 

  • Rebollar E, Castillejo M, Ezquerra TA (2015a) Laser induced periodic surface structures on polymer films: From fundamentals to applications. Eur Polym J 73:162

    Article  Google Scholar 

  • Rebollar E, Hernández M, Sanz M, Pérez S, Ezquerra TA, Castillejo M (2015b) Laser‐induced surface structures on gold‐coated polymers: Influence of morphology on surface‐enhanced R aman scattering enhancement. J Appl Polym Sci 132

    Article  Google Scholar 

  • Rebollar E, Rueda DR, Martín-Fabiani I, Rodriguez-Rodriguez A, Garcia-Gutierrez M-C, Portale G, Castillejo M, Ezquerra TA (2015c) In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle X-ray scattering. Langmuir 31:3973

    Article  Google Scholar 

  • Reinhardt C, Kiyan R, Passinger S, Stepanov AL, Ostendorf A, Chichkov BN (2007) Rapid laser prototyping of plasmonic components. Appl Phys A 89:321

    Article  ADS  Google Scholar 

  • Riedel D, Castex MC (1999) Effective absorption coefficient measurements in PMMA and PTFE by clean ablation process with a coherent VUV source at 125 nm. Appl Phys A 69:375

    Article  ADS  Google Scholar 

  • Riehn R, Charas A, Morgado J, Cacialli F (2003) Near-field optical lithography of a conjugated polymer. Appl Phys Lett 82:526

    Article  ADS  Google Scholar 

  • Ringeisen BR, Callahan J, Wu PK, Piqué A, Spargo B, McGill RA, Bucaro M, Kim H, Bubb DM, Chrisey DB (2001) Novel Laser-Based Deposition of Active Protein Thin Films. Langmuir 17:3472

    Article  Google Scholar 

  • Rodríguez-Beltrán RI, Paszkiewicz S, Szymczyk A, Rosłaniec Z, Nogales A, Ezquerra TA, Castillejo M, Moreno P, Rebollar E (2017) Laser induced periodic surface structures on polymer nanocomposites with carbon nanoadditives. Appl Phys A 123:717

    Article  ADS  Google Scholar 

  • Rodríguez-Beltrán RI, Hernandez M, Paszkiewicz S, Szymczyk A, Rosłaniec Z, Ezquerra TA, Castillejo M, Moreno P, Rebollar E (2018) Laser induced periodic surface structures formation by nanosecond laser irradiation of poly (ethylene terephthalate) reinforced with Expanded Graphite. Appl Surf Sci 436:1193

    Article  ADS  Google Scholar 

  • Rodríguez-Rodríguez Á, Rebollar E, Soccio M, Ezquerra TA, Rueda DR, Garcia-Ramos JV, Castillejo M, Garcia-Gutierrez M-C (2015) Laser-induced periodic surface structures on conjugated polymers: poly (3-hexylthiophene). Macromolecules 48:4024

    Article  ADS  Google Scholar 

  • Rodríguez-Rodríguez Á, Rebollar E, Ezquerra TA, Castillejo M, Garcia-Ramos JV, García-Gutiérrez M-C (2017) Patterning conjugated polymers by laser: Synergy of nanostructure formation in the all-polymer heterojunction P3HT/PCDTBT. Langmuir 34:115

    Article  Google Scholar 

  • Rodríguez-Rodríguez Á, García-Gutiérrez M-C, Ezquerra TA, Brady MA, Wang C, Rebollar E (2018) Resonant soft x-ray scattering unravels the hierarchical morphology of nanostructured bulk heterojunction photovoltaic thin films. Phys Rev Mater 2:066003

    Article  Google Scholar 

  • Romero F, Salinas-Castillo A, Rivadeneyra A, Albrecht A, Godoy A, Morales D, Rodriguez N (2018) In-Depth Study of Laser Diode Ablation of Kapton Polyimide for Flexible Conductive Substrates. Nano 8:517

    Google Scholar 

  • Rößler F, Günther D, Lasagni AF (2016) Fabrication of Hierarchical Micro Patterns on PET Substrates Using Direct Laser Interference Patterning. Adv Eng Mater 18:1755

    Article  Google Scholar 

  • Rößler F, Günther K, Lasagni AF (2018) In-volume structuring of a bilayered polymer foil using direct laser interference patterning. Appl Surf Sci 440:1166

    Article  ADS  Google Scholar 

  • Rubahn K, Ihlemann I, Jakopic G, Simonsen AC, Rubahn HG (2004) UV laser-induced grating formation in PDMS thin films. Appl Phys Mater Sci Process 79:1715

    Article  ADS  Google Scholar 

  • Sakellari I, Gaidukeviciute A, Giakoumaki A, Gray D, Fotakis C, Farsari M, Vamvakaki M, Reinhardt C, Ovsianikov A, Chichkov BN (2010) Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication. Appl Phys A 100:359

    Article  ADS  Google Scholar 

  • Sakellari I, Kabouraki E, Gray D, Purlys V, Fotakis C, Pikulin A, Bityurin N, Vamvakaki M, Farsari M (2012) Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing. ACS Nano 6:2302

    Article  Google Scholar 

  • Sánchez EH, Normile PS, De Toro JA, Caballero R, Canales-Vázquez J, Rebollar E, Castillejo M, Colino JM (2019) Flexible, multifunctional nanoribbon arrays of palladium nanoparticles for transparent conduction and hydrogen detection. Appl Surf Sci 470:212

    Article  ADS  Google Scholar 

  • Sapogova N, Bityurin N (2009) Model for UV induced formation of gold nanoparticles in solid polymeric matrices. Appl Surf Sci 255:9613

    Article  ADS  Google Scholar 

  • Schmidt H, Ihlemann J, Wolff-Rottke B, Luther K, Troe J (1998) Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained. J Appl Phys 83:5458

    Article  ADS  Google Scholar 

  • Selimis A, Tserevelakis GJ, Kogou S, Pouli P, Filippidis G, Sapogova N, Bityurin N, Fotakis C (2012) Nonlinear microscopy techniques for assessing the UV laser polymer interactions. Opt Express 20:3990

    Article  ADS  Google Scholar 

  • Seo J-H, Park JH, Kim S-I, Park BJ, Ma Z, Choi J, Ju B-K (2014) Nanopatterning by Laser Interference Lithography: Applications to Optical Devices. J Nanosci Nanotechnol 14:1521

    Article  Google Scholar 

  • Serra P, Piqué A (2019) Laser-Induced Forward Transfer: Fundamentals and Applications. Adv Mater Technol 4:1800099

    Article  Google Scholar 

  • Sima F, Davidson P, Pauthe E, Sima LE, Gallet O, Mihailescu IN, Anselme K (2011) Fibronectin layers by matrix-assisted pulsed laser evaporation from saline buffer-based cryogenic targets. Acta Biomater 7:3780

    Article  Google Scholar 

  • Singh SS, Baruah PK, Khare A, Joshi SN (2018) Incubation studies and the threshold for surface damage and cavity formation in the processing of polycarbonate by Nd:YAG laser. Opt Laser Technol 108:592

    Article  ADS  Google Scholar 

  • Slepička P, Rebollar E, Heitz J, Švorčík V (2008) Gold coatings on polyethyleneterephthalate nano-patterned by F2 laser irradiation. Appl Surf Sci 254:3585

    Article  ADS  Google Scholar 

  • Snelling HV, Walton CD, Whitehead DJ (2004) Polymer jacket stripping of optical fibres by laser irradiation. Appl Phys A 79:937

    Article  ADS  Google Scholar 

  • Socol G, Mihailescu IN, Albu A-M, Antohe S, Stanculescu F, Stanculescu A, Mihut L, Preda N, Socol M, Rasoga O (2009) MAPLE prepared polymeric thin films for non-linear optic applications. Appl Surf Sci 255:5611

    Article  ADS  Google Scholar 

  • Sowa S, Watanabe W, Tamaki T, Nishii J, Itoh K (2006) Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt Express 14:291

    Article  ADS  Google Scholar 

  • Spyratou E, Makropoulou M, Serafetinides AA (2008) Study of visible and mid-infrared laser ablation mechanism of PMMA and intraocular lenses: experimental and theoretical results. Lasers Med Sci 23:179

    Article  Google Scholar 

  • Srinivasan R (1991) Photokinetic etching of polymethyl methacrylate films by continuous wave ultraviolet laser radiation. J Appl Phys 70:7588

    Article  ADS  Google Scholar 

  • Srinivasan R, Braren B (1988) Ultraviolet laser ablation and etching of polymethyl methacrylate sensitized with an organic dopant. Appl Phys A 45:289

    Article  ADS  Google Scholar 

  • Srinivasan R, Braren B (1989) Ultraviolet laser ablation of organic polymers. Chem Rev 89:1303

    Article  Google Scholar 

  • Srinivasan R, Mayne-Banton V (1982) Self‐developing photoetching of poly(ethylene terephthalate) films by far‐ultraviolet excimer laser radiation. Appl Phys Lett 41:576

    Article  ADS  Google Scholar 

  • Srinivasan R, Sutcliffe E, Braren B (1987) Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl Phys Lett 51:1285

    Article  ADS  Google Scholar 

  • Stamatin L, Cristescu R, Socol G, Moldovan A, Mihaiescu D, Stamatin I, Mihailescu IN, Chrisey DB (2005) Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation. Appl Surf Sci 248:422

    Article  ADS  Google Scholar 

  • Steenberge GV, Geerinck P, Put SV, Koetsem JV, Ottevaere H, Morlion D, Thienpont H, Daele PV (2004) MT-Compatible Laser-Ablated Interconnections for Optical Printed Circuit Boards. J Lightwave Technol 22:2083

    Article  ADS  Google Scholar 

  • Straub M, Nguyen LH, Fazlic A, Gu M (2004) Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography. Opt Mater 27:359

    Article  ADS  Google Scholar 

  • Sublemontier O, Rosset-Kos M, Ceccotti T, Hergott JF, Auguste T, Normand D, Schmidt M, Beaumont F, Farcage D, Cheymol G, Le Caro JM, Cormont P, Mauchien P, Thro PY, Skrzypczak J, Muller S, Marquis E, Barthod B, Gaurand I, Davenet M, Bernard R (2011) Modular EUV Source for the next generation lithography. J Laser Micro Nanoeng 6:113

    Article  Google Scholar 

  • Sun H-B, Takada K, Kawata S (2001) Elastic force analysis of functional polymer submicron oscillators. Appl Phys Lett 79:3173

    Article  ADS  Google Scholar 

  • Sun C, Min J, Lin J, Wan H, Yang S, Wang S (2018) The effect of laser ablation treatment on the chemistry, morphology and bonding strength of CFRP joints. Int J Adhes Adhes 84:325

    Article  Google Scholar 

  • Sutcliffe E, Srinivasan R (1986) Dynamics of UV laser ablation of organic polymer surfaces. J Appl Phys 60:3315

    Article  ADS  Google Scholar 

  • Takada K, Sun H-B, Kawata S (2005) Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting. Appl Phys Lett 86:071122

    Article  ADS  Google Scholar 

  • Tan D, Li Y, Qi F, Yang H, Gong Q, Dong X, Duan X (2007) Reduction in feature size of two-photon polymerization using SCR500. Appl Phys Lett 90:071106

    Article  ADS  Google Scholar 

  • Thomas B, Alloncle AP, Delaporte P, Sentis M, Sanaur S, Barret M, Collot P (2007) Experimental investigations of laser-induced forward transfer process of organic thin films. Appl Surf Sci 254:1206

    Article  ADS  Google Scholar 

  • Toftmann B, Papantonakis MR, Auyeung RCY, Kim W, O’Malley SM, Bubb DM, Horwitz JS, Schou J, Johansen PM, Haglund RF (2004) UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films. Thin Solid Films 453–454:177

    Article  Google Scholar 

  • Toriumi A, Herrmann JM, Kawata S (1997) Nondestructive readout of a three-dimensional photochromic optical memory with a near-infrared differential phase-contrast microscope. Opt Lett 22:555

    Article  ADS  Google Scholar 

  • Torrisi L, Gammino S, Mezzasalma AM, Visco AM, Badziak J, Parys P, Wolowski J, Woryna E, Krása J, Láska L, Pfeifer M, Rohlena K, Boody FP (2004) Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser. Appl Surf Sci 227:164

    Article  ADS  Google Scholar 

  • Trokel SL, Srinivasan R, Braren B (1983) Excimer Laser Surgery of the Cornea. Am J Ophthalmol 96:710

    Article  Google Scholar 

  • Tsuboi Y, Goto M, Itaya A (2001) Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films. J Appl Phys 89:7917

    Article  ADS  Google Scholar 

  • Tsutsumi N, Fujihara A (2007) Self-assembled spontaneous structures induced by a pulsed laser on a surface of azobenzene polymer film. J Appl Phys 101:033110

    Article  ADS  Google Scholar 

  • Walker E, Rentzepis PM (2008) A new dimension. Nat Photonics 2:406

    Article  ADS  Google Scholar 

  • Wang B, Wang X, Zheng H, Lam YC (2015) Surface Wettability Modification of Cyclic Olefin Polymer by Direct Femtosecond Laser Irradiation. Nanomaterials (Basel) 5:1442

    Article  Google Scholar 

  • Wei W, Alex K, Omer GM, Hooman M (2007) A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars. Nanotechnology 18:485302

    Article  Google Scholar 

  • Womack M, Vendan M, Molian P (2004) Femtosecond pulsed laser ablation and deposition of thin films of polytetrafluoroethylene. Appl Surf Sci 221:99

    Article  ADS  Google Scholar 

  • Wu PK, Ringeisen BR, Callahan J, Brooks M, Bubb DM, Wu HD, Piqué A, Spargo B, McGill RA, Chrisey DB (2001) The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398–399:607

    Article  Google Scholar 

  • Wu XH, Yamilov A, Noh H, Cao H, Seelig EW, Chang RPH (2004) Random lasing in closely packed resonant scatterers. J Opt Soc Am B 21:159

    Article  ADS  Google Scholar 

  • Wu G, Paz MD, Chiussi S, Serra J, González P, Wang YJ, Leon B (2009) Excimer laser chemical ammonia patterning on PET film. J Mater Sci Mater Med 20:597

    Article  Google Scholar 

  • Yakimovich NO, Sapogova NV, Smirnova LA, Aleksandrov AP, Gracheva TA, Kirsanov AV, Bityurin NM (2008) Gold-Containing Nanocomposition Materials on the Basis of Homo- and Copolymers of Methylmethacrylate. Russ J Phys Chem B Focus Physics 2:128

    Google Scholar 

  • Yingling YG, Garrison BJ (2004) Coarse-Grained Chemical Reaction Model. J Phys Chem B 108:1815

    Article  Google Scholar 

  • Yingling YG, Garrison BJ (2005) Coarse-Grained Model of the Interaction of Light with Polymeric Material: Onset of Ablation. J Phys Chem B 109:16482

    Article  Google Scholar 

  • Yingling YG, Garrison BJ (2007) Incorporation of chemical reactions into UV photochemical ablation of coarse-grained material. Appl Surf Sci 253:6377

    Article  ADS  Google Scholar 

  • Yu F, Mücklich F, Li P, Shen H, Mathur S, Lehr C-M, Bakowsky U (2005) In Vitro Cell Response to a Polymer Surface Micropatterned by Laser Interference Lithography. Biomacromolecules 6:1160

    Article  Google Scholar 

  • Yudasaka M, Tasaka Y, Tanaka M, Kamo H, Ohki Y, Usami S, Yoshimura S (1994) Polyperinaphthalene film formation by pulsed laser deposition with a target of perylenetetracarboxylic dianhydride. Appl Phys Lett 64:3237

    Article  ADS  Google Scholar 

  • Zenobi R, Knochenmuss R (1998) Ion formation in MALDI mass spectrometry. Mass Spectrom Rev 17:337

    Article  ADS  Google Scholar 

  • Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer Simulations of Laser Ablation of Molecular Substrates. Chem Rev 103:321

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are given to Spanish Ministry of Science, Innovation and Universities (MCIU) for funding under the project CTQ2016-75880-P. E.R. also thanks the tenure of a Ramón y Cajal contract (No. RYC-2011-08069). M.C. acknowledges support from Project PRX18/00029 (MCIU).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esther Rebollar or Marta Castillejo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rebollar, E., Castillejo, M. (2020). Laser Interactions with Organic/Polymer Materials. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics