Skip to main content

Radiation-Resistant Solar Cells: Recent Updates and Future Prospective

  • Reference work entry
  • First Online:
Handbook of Ecomaterials
  • 160 Accesses

Abstract

The stability of a solar cell lifetime and performance in radiation harsh environments is a challenging field for today’s modern photovoltaics technology. Radiation environment, especially, charge particles (i.e., electrons or protons) presence strongly influences the performance of solar cells. Such high energy radiations are mostly used to analyze ionization/displacement damage effects in solar cells and these cannot be avoided in the space environment. Charge particle radiations can produce defects in the crystal orientation of semiconductors and the devices based on semiconductor materials. Further additional energy levels or recombination centers are introduced within the p-type or n-type materials. Ultimately, the expected performance or efficiency is disturbed in such devices or solar cells. These centers are responsible of electron-hole pairs near the mid gap. Electrons are trapped in these centers which decrease the minority carriers’ lifetime of solar cell. Ultimately electrical characteristics are changed and overall performance of solar cell is degraded. Further, different characteristics to investigate radiation effects on solar cells are discussed. Measurement of depletion layer widths can help in diagnosing radiation effects as the broadening of widths in the micrometer range occur after irradiation. Conductance method is another widely used technique to investigate the effect of density of interface centers on the efficiency of silicon solar cells. These techniques are used to measure trap time constants and to extract the density of trap centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu Z, He S, Yang D (2006) Radiation effects of protons and electrons on backfield silicon solar cells. In: Protection of materials and structures from the space environment. Springer, Dordrecht (Netherland) pp 1–8

    Google Scholar 

  2. Srour J, Marshall CJ, Marshall PW (2003) Review of displacement damage effects in silicon devices. IEEE Trans Nucl Sci 50(3):653–670

    Article  Google Scholar 

  3. Summers GP et al (1993) Damage correlations in semiconductors exposed to gamma, electron and proton radiations. IEEE Trans Nucl Sci 40(6):1372–1379

    Article  Google Scholar 

  4. Reddy IN et al (2013) Development of SiO2 based thin film on metal foils for space application. Ceram Int 39(7):8493–8498

    Article  Google Scholar 

  5. Yamaguchi M (2001) Radiation-resistant solar cells for space use. Sol Energy Mater Sol Cells 68(1):31–53

    Article  Google Scholar 

  6. Curtin DJ, Statler RL (1975) Review of radiation damage to silicon solar cells. IEEE Trans Aerosp Electron Syst AES-11(4):499–513

    Article  Google Scholar 

  7. Tada H et al (1982) Solar cell radiation handbook, vol 1. Jet Propulsion Lab., California Inst. of Tech.; Pasadena, CA, (USA)

    Google Scholar 

  8. Evans RD, Noyau A (1955) The atomic nucleus, vol 582. McGraw-Hill, New York

    Google Scholar 

  9. Claeys C, Simoen E (2002) Radiation effects in advanced semiconductor materials and devices. Springer, Berlin

    Book  Google Scholar 

  10. Hisamatsu T et al (1999) Photoluminescence study of silicon solar cells irradiated with large fluence electrons or protons. Radiat Phys Chem 53(1):25–30

    Article  Google Scholar 

  11. Corbett JW (1966) Solid state physics vol 7: electron radiation damage in semiconductors and metals. Academic press, New York (USA)

    Google Scholar 

  12. Bourgoin JC, de Angelis N (2001) Radiation-induced defects in solar cell materials. Sol Energy Mater Sol Cells 66(1–4):467–477

    Article  Google Scholar 

  13. Rao A et al (2009) Effect of 8 MeV electrons on Au/n-Si Schottky diodes. Int J Pure Appl Phys 5(1):55–62

    Google Scholar 

  14. Nicollian EH, Brews JR (1982) MOS (metal oxide semiconductor) physics and technology, vol 1987. Wiley, New York

    Google Scholar 

  15. Kao W et al (2010) Effect of interface states on sub-threshold response of III–V MOSFETs, MOS HEMTs and tunnel FETs. Solid State Electron 54(12):1665–1668

    Article  Google Scholar 

  16. Dienes GJ (1953) Radiation effects in solids. Annu Rev Nucl Sci 2(1):187–220

    Article  Google Scholar 

  17. Ma TP, Dressendorfer PV (1989) Ionizing radiation effects in MOS devices and circuits. Wiley, New York

    Google Scholar 

  18. Spieler H (1997) Introduction to radiation-resistant semiconductor devices and circuits. In: AIP conference proceedings. IOP Institute of Physics Publishing, Argonne, Illinois (USA)

    Google Scholar 

  19. Lovell S (1979) An introduction to radiation dosimetry. CUP Archive, Cambridge, London (UK)

    Google Scholar 

  20. Billington DS, Crawford JH (1961) Radiation damage in solids. Princeton University Press, Princeton

    Google Scholar 

  21. Wigner EP (1992) Theoretical physics in the metallurgical laboratory of Chicago. In: Weinberg A (ed) Nuclear energy. Springer, Berlin/Heidelberg, pp 452–458

    Chapter  Google Scholar 

  22. Loferski JJ, Rappaport P (1959) Displacement thresholds in semiconductors. J Appl Phys 30(8):1296–1299

    Article  Google Scholar 

  23. Slater JC (1951) The effects of radiation on materials. J Appl Phys 22(3):237–256

    Article  Google Scholar 

  24. Klein CA (1959) Radiation-induced energy levels in silicon. J Appl Phys 30(8):1222–1231

    Article  Google Scholar 

  25. Hill DE (1959) Electron bombardment of silicon. Phys Rev 114(6):1414

    Article  Google Scholar 

  26. Summers GP et al (1994) A new approach to damage prediction for solar cells exposed to different radiations. In: first world conference on photovoltaic energy conversion, 1994, conference record of the twenty fourth. IEEE photovoltaic specialists conference. IEEE, Waikoloa, HI, (USA)

    Google Scholar 

  27. Yamaguchi M et al (1996) Mechanism for the anomalous degradation of Si solar cells induced by high fluence 1 MeV electron irradiation. Appl Phys Lett 68(22):3141–3143

    Article  Google Scholar 

  28. Taylor SJ et al (1997) Type conversion in irradiated silicon diodes. Appl Phys Lett 70(16):2165–2167

    Article  Google Scholar 

  29. Taylor SJ et al (1997) Investigation of carrier removal in electron irradiated silicon diodes. J Appl Phys 82(7):3239–3249

    Article  Google Scholar 

  30. Kawasuso A et al (1995) An annealing study of defects induced by electron irradiation of Czochralski-grown Si using a positron lifetime technique. Appl Surf Sci 85:280–286

    Article  Google Scholar 

  31. Lalita J et al (1996) Defect evolution in MeV ion-implanted silicon. Nucl Instrum Methods Phys Res, Sect B 120(1–4):27–32

    Article  Google Scholar 

  32. Bourgoin JC, Corbett JW (1972) A new mechanism for interstistitial migration. Phys Lett A 38(2):135–137

    Article  Google Scholar 

  33. Hu Z, He S, Yang D (2004) Effect of <200 keV proton radiation on electric properties of silicon solar cells at 77 K. Nucl Instrum Methods Phys Res, Sect B 217(2):321–326

    Article  Google Scholar 

  34. Hu Z, He S, Yang D (2006) Radiation effects of protons and electrons on backfield silicon solar cells. In: Kleiman J (ed) Protection of materials and structures from the space environment. Springer, Dordrecht (Netherlands) pp 1–8

    Google Scholar 

  35. Suzuki A (1998) High-efficiency silicon space solar cells. Sol Energy Mater Sol Cells 50(1):289–303

    Article  Google Scholar 

  36. Hisamatsu T et al (1998) Radiation degradation of large fluence irradiated space silicon solar cells. Sol Energy Mater Sol Cells 50(1–4):331–338

    Article  Google Scholar 

  37. Emtsev VV et al. Frenkel pairs and impurity-defect interactions in p-type silicon irradiated with fast electrons and gamma-rays at low temperatures. In: Materials science forum. Trans Tech Publications, Reinhardstrasse, Zurich (Switzerland)

    Article  Google Scholar 

  38. Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM, the stopping and range of ions in matter. SRIM Co, Chester

    Google Scholar 

  39. Joachain CJ (1975) Quantum collision theory. North-Holand Publishing Co, Amsterdam (Netherland)

    Google Scholar 

  40. Berger MJ, Seltzer SM (1982) Stopping powers and ranges of electrons and positrons. Washington, DC, National Bureau of Standards, Springfield, VA (USA)

    Google Scholar 

  41. Seltzer SM, Berger MJ (1982) Procedure for calculating the radiation stopping power for electrons. Int J Appl Radiat Isotop 33(11):1219–1226

    Article  Google Scholar 

  42. Seltzer SM, Berger MJ (1982) Evaluation of the collision stopping power of elements and compounds for electrons and positrons. Int J Appl Radiat Isot 33(11):1189–1218

    Article  Google Scholar 

  43. Bethe HA, Ashkin J (1953) Passage of radiations through matter. Exp Nucl Phys 1(Part II):309

    Google Scholar 

  44. Heitler W (1954) The quantum theory of radiation. Courier Dover Publications, New York (USA)

    Google Scholar 

  45. Jelley NA (1990) Fundamentals of nuclear physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  46. Arya AP (1966) Fundamentals of nuclear physics. Allyn and Bacon, Boston, MA (USA)

    Google Scholar 

  47. Marmier P, Sheldon E (1969) Physics of nuclei and particles. Academic Press, New York (USA)

    Google Scholar 

  48. Lapp RE, Andrews HL (1954) Nuclear radiation physics. Prentice-Hall, New York (USA)

    Google Scholar 

  49. Katz L, Penfold A (1952) Range-energy relations for electrons and the determination of beta-ray end-point energies by absorption. Rev Mod Phys 24(1):28

    Article  Google Scholar 

  50. Srour J, Hartmann R (1989) Enhanced displacement damage effectiveness in irradiated silicon devices. IEEE Trans Nucl Sci 36(6):1825–1830

    Article  Google Scholar 

  51. Braäunig D, Wulf F (1994) Atomic displacement and total ionizing dose damage in semiconductors. Radiat Phys Chem 43(1):105–127

    Article  Google Scholar 

  52. Loferski J, Rappaport P (1958) Radiation damage in Ge and Si detected by carrier lifetime changes: damage thresholds. Phys Rev 111(2):432

    Article  Google Scholar 

  53. Flicker H, Loferski J, Scott-Monck J (1962) Radiation defect introduction rates in n-and p-type silicon in the vicinity of the radiation damage threshold. Phys Rev 128(6):2557

    Article  Google Scholar 

  54. Flicker H, Patterson W III (1966) Theoretical calculation of the direct production of Divacancies in silicon. J Appl Phys 37(13):4998–4999

    Article  Google Scholar 

  55. Baicker JA (1963) Recombination and trapping in normal and electron-irradiated silicon. Phys Rev 129(3):1174

    Article  Google Scholar 

  56. Shockley W (1949) The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst Tech J 28(3):435–489

    Article  Google Scholar 

  57. Shockley W (1950) Electrons and holes in semiconductors: with applications to transistor electronics. Toronto, ON (Canada)

    Google Scholar 

  58. Sah R-Y, Noyce RN, Shockley W (1957) Carrier generation and recombination in pn junctions and pn junction characteristics. Proc IRE 45(9):1228–1243

    Article  Google Scholar 

  59. Moll J (1958) The evolution of the theory for the voltage-current characteristic of pn junctions. Proc IRE 46(6):1076–1082

    Article  Google Scholar 

  60. Sze SM, Ng KK (2006) Physics of semiconductor devices. John Wiley & Sons, Inc, New Jersey (USA)

    Book  Google Scholar 

  61. Hussain I et al (2012) Interface trap characterization and electrical properties of Au-ZnO nanorod Schottky diodes by conductance and capacitance methods. J Appl Phys 112(6):064506

    Article  Google Scholar 

  62. Schroder DK (2006) Semiconductor material and device characterization. John Wiley & Sons, Inc., Hoboken, New Jersey (USA)

    Book  Google Scholar 

  63. Cakar M et al (2007) The conductance and capacitance–frequency characteristics of Au/pyronine-B/p-type Si/Al contacts. Appl Surf Sci 253(7):3464–3468

    Article  Google Scholar 

  64. Bouzidi K, Chegaar M, Bouhemadou A (2007) Solar cells parameters evaluation considering the series and shunt resistance. Sol Energy Mater Sol Cells 91(18):1647–1651

    Article  Google Scholar 

  65. Luque A, Cuevas A, Eguren J (1978) Solar cell behaviour under variable surface recombination velocity and proposal of a novel structure. Solid State Electron 21(5):793–794

    Article  Google Scholar 

  66. Tucci M, de Cesare G (2004) 17% efficiency heterostructure solar cell based on p-type crystalline silicon. J Non-Cryst Solids 338–340:663–667

    Article  Google Scholar 

  67. Plekhanov PS, Negoita MD, Tan TY (2001) Effect of Al-induced gettering and back surface field on the efficiency of Si solar cells. J Appl Phys 90(10):5388–5394

    Article  Google Scholar 

  68. Koval T, Wohlgemuth J, Kinsey B (1996) Dependence of cell performance on wafer thickness for bsf and non-bsf cells. In: Photovoltaic specialists conference, 1996, conference record of the twenty fifth IEEE, IEEE Washington, DC (USA)

    Google Scholar 

  69. Ali K, Khan SA, Mat Jafri MZ (2014) Enhancement of silicon solar cell efficiency by using back surface field in comparison of different antireflective coatings. Sol Energy 101:1–7

    Article  Google Scholar 

  70. Hovel HJ, De Souza JP, Marshall ED (2010) Comparison of back interface structure alternatives using two sided optical excitation. In: Photovoltaic specialists conference (PVSC), 2010 35th IEEE, Honolulu, (Hawaii)

    Google Scholar 

  71. Kolsi S et al (2012) Effect of Gaussian doping on the performance of a n[sup + ]-p thin film polycrystalline solar cell under illumination. J Renew Sustain Energy 4(2):023118–023112

    Article  Google Scholar 

  72. Selvakumar CR, Roulston DJ, Jain SC, Tsao J (1988) Effective recombination velocity of low–high junctions. Solid State Electron 8:1346–1348

    Article  Google Scholar 

  73. Narasimha S, Rohatgi A, Weeber AW (1999) An optimized rapid aluminum back surface field technique for silicon solar cells. IEEE Trans Electron Devices 46(7):1363–1370

    Article  Google Scholar 

  74. Fossum JG (1977) Physical operation of back-surface-field silicon solar cells. IEEE Trans Electron Devices 24(4):322–325

    Article  Google Scholar 

  75. Slade AM, Honsberg CB, Wenham SR (2001) Impact and options for boron diffusions in buried contact solar cells. Sol Energy Mater Sol Cells 66(1–4):11–15

    Article  Google Scholar 

  76. Doshi P et al (1997) Characterization and application of rapid thermal oxide surface passivation for the highest efficiency RTP silicon solar cells. In: Photovoltaic specialists conference, 1997, conference record of the twenty-sixth IEEE. IEEE, Anaheim, CA (USA)

    Google Scholar 

  77. Girisch R, Mertens RP, Van Overstraeten R (1986) Experimental and theoretical evaluation of boron diffused high-low junctions for BSF solar cells. Solid State Electron 29(6):667–676

    Article  Google Scholar 

  78. Lolgen P et al (1993) Aluminium back-surface field doping profiles with surface recombination velocities below 200 cm/s. In: Photovoltaic specialists conference, 1993, conference record of the twenty third IEEE. IEEE, Louisville, KY (USA)

    Google Scholar 

  79. Bemski G (1959) Paramagnetic resonance in electron irradiated silicon. J Appl Phys 30(8):1195–1198

    Article  Google Scholar 

  80. Watkins G, Corbett J, Walker R (1959) Spin resonance in electron irradiated silicon. J Appl Phys 30(8):1198–1203

    Article  Google Scholar 

  81. Watkins G, Corbett J (1961) Defects in irradiated silicon. I. Electron spin resonance of the Si-A center. Phys Rev 121(4):1001

    Article  Google Scholar 

  82. Corbett J et al (1961) Defects in irradiated silicon. II. Infrared absorption of the Si-A center. Phys Rev 121(4):1015

    Article  Google Scholar 

  83. Watkins G, Corbett J (1964) Defects in irradiated silicon: electron paramagnetic resonance and electron-nuclear double resonance of the Si-E center. Phys Rev 134(5A):A1359

    Article  Google Scholar 

  84. Wertheim G (1957) Energy levels in electron-bombarded silicon. Phys Rev 105(6):1730

    Article  Google Scholar 

  85. Wertheim G (1958) Electron-bombardment damage in silicon. Phys Rev 110(6):1272

    Article  Google Scholar 

  86. Hirata M et al (1967) Effect of impurities on the annealing behavior of irradiated silicon. J Appl Phys 38(6):2433–2438

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuram Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ali, K., Javed, Y. (2019). Radiation-Resistant Solar Cells: Recent Updates and Future Prospective. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_96

Download citation

Publish with us

Policies and ethics