Skip to main content

Eco-materials in Textile Finishing

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

The textile finishing industry, which is the backbone of the fashion clothing sector, creates the highest volume of waste water compared with other stages in textile manufacturing. The expectations of modern consumers regarding the textile products they use have increased dramatically; consumers want textiles that suit their taste and are health-friendly. It is now very important for the textile industries to reconsider the technologies and chemicals used, so that they can satisfy environmental and consumer requirements. Enzymes, nature-based finishing agents, nanotechnology and disruptive technologies such as plasma finishing are gradually replacing conventional systems for finishing textile materials. Enzymes are used in textile finishing processes such as bio-stoning and are good alternatives to toxic chemicals because they are specific in action and can be broken down into simple by-products. Herbal textiles use plant extracts for finishing and are becoming popular. This chapter discusses eco-friendly finishing of textile materials using nanotechnology, plasma treatment, enzymes, biopolymers and other nature-based finishing agents. We also discuss worldwide environmental regulations and schemes for textile products and their production processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Periyasamy AP, Wiener J, Militky J (2017) Life-cycle assessment of denim, Chapter 4. In: Muthu SS (ed) Sustainability in denim. Woodhead, Cambridge, pp 83–110

    Chapter  Google Scholar 

  2. Periyasamy AP, Jiri M (2017) Denim and consumers’ phase of life cycle, Chapter 10. In: Muthu SS (ed) Sustainability in denim. Woodhead, Cambridge, pp 257–282

    Chapter  Google Scholar 

  3. Periyasamy AP, Militky J (2017) Denim processing and health hazards, Chapter 7. In: Muthu SS (ed) Sustainability in denim. Woodhead, Cambridge, pp 161–196

    Chapter  Google Scholar 

  4. Gotoh K, Yasukawa A (2011) Atmospheric pressure plasma modification of polyester fabric for improvement of textile-specific properties. Text Res J 81:368–378

    Article  Google Scholar 

  5. Huang C-Y, Wu J-Y, Tsai C-S et al (2013) Effects of argon plasma treatment on the adhesion property of ultra high molecular weight polyethylene (UHMWPE) textile. Surf Coat Technol 231:507–511

    Article  Google Scholar 

  6. Masaeli E, Morshed M, Tavanai H (2007) Study of the wettability properties of polypropylene nonwoven mats by low pressure oxygen plasma treatment. Surf Interface Anal 39:770–774

    Article  Google Scholar 

  7. Li H, Liang H, He F et al (2009) Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites. Surf Coat Technol 203:1317–1321

    Article  Google Scholar 

  8. Raffaele-Addamo A, Selli E, Barni R et al (2006) Cold plasma-induced modification of the dyeing properties of poly(ethylene terephthalate) fibers. Appl Surf Sci 252:2265–2275. https://doi.org/10.1016/j.apsusc.2005.04.013

    Article  Google Scholar 

  9. Vander Wielen LC, Östenson M, Gatenholm P, Ragauskas AJ (2006) Surface modification of cellulosic fibers using dielectric-barrier discharge. Carbohydr Polym 65:179–184

    Article  Google Scholar 

  10. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46. https://doi.org/10.1023/a:1022470901385

    Article  Google Scholar 

  11. Xi M, Li Y-L, Shang S et al (2008) Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing. Surf Coat Technol 202:6029–6033. https://doi.org/10.1016/j.surfcoat.2008.06.181

    Article  Google Scholar 

  12. Pappas DD, Bujanda AA, Orlicki JA, Jensen RE (2008) Chemical and morphological modification of polymers under a helium–oxygen dielectric barrier discharge. Surf Coat Technol 203:830–834. https://doi.org/10.1016/j.surfcoat.2008.05.029

    Article  Google Scholar 

  13. Carneiro N, Souto AP, Silva E et al (2001) Dyeability of corona-treated fabrics. Color Technol 117:298–302. https://doi.org/10.1111/j.1478-4408.2001.tb00079.x

    Article  Google Scholar 

  14. Oliveira FR, Souto AP, Carneiro N (2010) Aplicação da descarga plasmática de dupla barreira diélectrica (DBD) em fibras têxteis hidrofóbicas: estudo da força colorística. Redige 1:127–140

    Google Scholar 

  15. Zille A, Oliveira FR, Souto AP (2015) Plasma treatment in textile industry. Plasma Process Polym 12:98–131

    Article  Google Scholar 

  16. Matthews SR, McCord MG, Bourham MA (2005) Poly(vinyl alcohol) desizing mechanism via atmospheric pressure plasma exposure. Plasma Process Polym 2:702–708. https://doi.org/10.1002/ppap.200500056

    Article  Google Scholar 

  17. Karahan HA, Özdoğan E, Demir A et al (2008) Effects of atmospheric plasma treatment on the dyeability of cotton fabrics by acid dyes. Color Technol 124:106–110. https://doi.org/10.1111/j.1478-4408.2008.00129.x

    Article  Google Scholar 

  18. Peng S, Liu X, Sun J et al (2010) Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment. Appl Surf Sci 256:4103–4108. https://doi.org/10.1016/j.apsusc.2010.01.091

    Article  Google Scholar 

  19. Yaman N, Özdoğan E, Seventekin N, Ayhan H (2009) Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff. Appl Surf Sci 255:6764–6770. https://doi.org/10.1016/j.apsusc.2008.10.121

    Article  Google Scholar 

  20. Jocic D, Vílchez S, Topalovic T et al (2005) Effect of low-temperature plasma and chitosan treatment on wool dyeing with acid red 27. J Appl Polym Sci 97:2204–2214. https://doi.org/10.1002/app.21866

    Article  Google Scholar 

  21. Kan CW, Yuen CWM, Tsoi WYI, Tang TB (2010) Plasma pretreatment for polymer deposition – improving antifelting properties of wool. IEEE Trans Plasma Sci 38:1505–1511. https://doi.org/10.1109/TPS.2010.2046338

    Article  Google Scholar 

  22. Zhang CM, Fang KJ (2011) Influence of penetration depth of atmospheric pressure plasma processing into multiple layers of polyester fabrics on inkjet printing. Surf Eng 27:139–144

    Article  Google Scholar 

  23. Kan CW, Yuen CWM (2008) Static properties and moisture content properties of polyester fabrics modified by plasma treatment and chemical finishing. Nucl Instrum Methods Phys Res Sect B 266:127–132. https://doi.org/10.1016/j.nimb.2007.10.034

    Article  Google Scholar 

  24. Periyasamy AP, Vikova M, Vik M (2017) A review of photochromism in textiles and its measurement. Text Prog 49:53–136. https://doi.org/10.1080/00405167.2017.1305833

    Article  Google Scholar 

  25. Periyasamy AP (2016) Effect of PVAmHCl pre-treatment on the properties of modal fabric dyed with reactive dyes: an approach for salt free dyeing. J Text Sci Eng 6(262):1–9. https://doi.org/10.4172/2165-8064.1000262

    Article  Google Scholar 

  26. Vikova M, Periyasamy AP, Vik M, Ujhelyiová A (2017) Effect of drawing ratio on difference in optical density and mechanical properties of mass colored photochromic polypropylene filaments. J Text Inst 108:1365–1370. https://doi.org/10.1080/00405000.2016.1251290

    Article  Google Scholar 

  27. Shahidi S, Rashidi A, Ghoranneviss M et al (2010) Plasma effects on anti-felting properties of wool fabrics. Surf Coat Technol 205:S349–S354. https://doi.org/10.1016/j.surfcoat.2010.08.003

    Article  Google Scholar 

  28. Perkins WS (1996) Textile coloration and finishing. Carolina Academic Press, Durham

    Google Scholar 

  29. Xu H, Peng S, Wang C et al (2009) Influence of absorbed moisture on antifelting property of wool treated with atmospheric pressure plasma. J Appl Polym Sci 113:3687–3692. https://doi.org/10.1002/app.30429

    Article  Google Scholar 

  30. Sigurdsson S, Shishoo R (1997) Surface properties of polymers treated with tetrafluoromethane plasma. J Appl Polym Sci 66:1591–1601. https://doi.org/10.1002/(SICI)1097-4628(19971121)66:8<1591::AID-APP21>3.0.CO;2-5

    Article  Google Scholar 

  31. Artus GRJ, Zimmermann J, Reifler FA et al (2012) A superoleophobic textile repellent towards impacting drops of alkanes. Appl Surf Sci 258:3835–3840. https://doi.org/10.1016/j.apsusc.2011.12.041

    Article  Google Scholar 

  32. Errifai I, Jama C, Le Bras M et al (2004) Elaboration of a fire retardant coating for polyamide-6 using cold plasma polymerization of a fluorinated acrylate. Surf Coat Technol 180:297–301. https://doi.org/10.1016/j.surfcoat.2003.10.074

    Article  Google Scholar 

  33. Labay C, Canal C, García-Celma MJ (2010) Influence of corona plasma treatment on polypropylene and polyamide 6.6 on the release of a model drug. Plasma Chem Plasma Process 30:885–896. https://doi.org/10.1007/s11090-010-9255-2

    Article  Google Scholar 

  34. Nada AA, Hauser P, Hudson SM (2011) The grafting of per-(2,3,6-O-allyl)-β cyclodextrin onto derivatized cotton cellulose via thermal and atmospheric plasma techniques. Plasma Chem Plasma Process 31:605–621. https://doi.org/10.1007/s11090-011-9300-9

    Article  Google Scholar 

  35. Szymanowski H, Sobczyk A, Gazicki-Lipman M et al (2005) Plasma enhanced CVD deposition of titanium oxide for biomedical applications. Surf Coat Technol 200:1036–1040. https://doi.org/10.1016/j.surfcoat.2005.01.092

    Article  Google Scholar 

  36. Davis R, El-Shafei A, Hauser P (2011) Use of atmospheric pressure plasma to confer durable water repellent functionality and antimicrobial functionality on cotton/polyester blend. Surf Coat Technol 205:4791–4797. https://doi.org/10.1016/j.surfcoat.2011.04.035

    Article  Google Scholar 

  37. Hori T (2008) New horizons of textile finishing. In: Proceedings of the IFATCC 21st international congress, Barcelona

    Google Scholar 

  38. Graupner N, Albrecht K, Hegemann D, Müssig J (2013) Plasma modification of man-made cellulose fibers (Lyocell) for improved fiber/matrix adhesion in poly(lactic acid) composites. J Appl Polym Sci 128:4378–4386. https://doi.org/10.1002/app.38663

    Article  Google Scholar 

  39. Periyasamy AP, Dhurai B, Thangamani K (2011) Salt-free dyeing – a new method of dyeing on lyocell/cotton blended fabrics with reactive dyes. Autex Res J 11:14–17

    Google Scholar 

  40. Fatarella E, Ciabatti I, Cortez J (2010) Plasma and electron-beam processes as pretreatments for enzymatic processes. Enzym Microb Technol 46:100–106. https://doi.org/10.1016/j.enzmictec.2009.10.004

    Article  Google Scholar 

  41. Periyasamy AP (2006) Nano technology for achieving high functional textile finishing. Text Mag 48:28–34

    Google Scholar 

  42. Alemán JV, Chadwick AV, He J et al (2007) Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC recommendations 2007). Pure Appl Chem 79:1801–1829

    Article  Google Scholar 

  43. Lee D, Rubner MF, Cohen RE (2006) All-nanoparticle thin-film coatings. Nano Lett 6:2305–2312

    Article  Google Scholar 

  44. Russell E (2002) Nanotechnologies and the shrinking world of textiles. Text Horizons 9:7–9

    Google Scholar 

  45. Behabtu N, Green MJ, Pasquali M (2008) Carbon nanotube-based neat fibers. Nano Today 3:24–34

    Article  Google Scholar 

  46. Yu M, Gu G, Meng W-D, Qing F-L (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253:3669–3673

    Article  Google Scholar 

  47. Liu Y, Tang J, Wang R et al (2007) Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J Mater Chem 17:1071–1078

    Article  Google Scholar 

  48. Hoefnagels HF, Wu D, De With G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23:13158–13163

    Article  Google Scholar 

  49. Wang C, Chen C (2005) Physical properties of crosslinked cellulose catalyzed with nano titanium dioxide. J Appl Polym Sci 97:2450–2456

    Article  Google Scholar 

  50. Lu YH, Lin H, Chen YY et al (2007) Structure and performance ofBombyx mori silk modified with nano-TiO2 and chitosan. Fibers Polym 8:1–6

    Article  Google Scholar 

  51. Song XQ, Liu A, Ji CT, Li HT (2001) The effect of nano-particle concentration and heating time in the anti-crinkle treatment of silk. J Jilin Inst Technol 22:24–27

    Google Scholar 

  52. Saito M (1993) Antibacterial, deodorizing, and UV absorbing materials obtained with zinc oxide (ZnO) coated fabrics. J Coat Fabr 23:150–164

    Article  Google Scholar 

  53. Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130

    Article  Google Scholar 

  54. Qi K, Chen X, Liu Y et al (2007) Facile preparation of anatase/SiO 2 spherical nanocomposites and their application in self-cleaning textiles. J Mater Chem 17:3504–3508

    Article  Google Scholar 

  55. Bozzi A, Yuranova T, Kiwi J (2005) Self-cleaning of wool-polyamide and polyester textiles by TiO 2-rutile modification under daylight irradiation at ambient temperature. J Photochem Photobiol A Chem 172:27–34

    Article  Google Scholar 

  56. Song J, Wang C, Hinestroza JP (2013) Electrostatic assembly of core-corona silica nanoparticles onto cotton fibers. Cellulose 20:1727–1736

    Article  Google Scholar 

  57. Daoud WA, Xin JH (2004) Low temperature sol-gel processed photocatalytic titania coating. J Sol-Gel Sci Technol 29:25–29

    Article  Google Scholar 

  58. Wang R, Xin JH, Tao XM, Daoud WA (2004) ZnO nanorods grown on cotton fabrics at low temperature. Chem Phys Lett 398:250–255

    Article  Google Scholar 

  59. Horrocks AR, Price D (2008) Advances in fire retardant materials. Elsevier, Amsterdam

    Book  Google Scholar 

  60. Erdem N, Cireli AA, Erdogan UH (2009) Flame retardancy behaviors and structural properties of polypropylene/nano-SiO2 composite textile filaments. J Appl Polym Sci 111:2085–2091

    Article  Google Scholar 

  61. Beyer G (2005) Filler blend of carbon nanotubes and organoclays with improved char as a new flame retardant system for polymers and cable applications. Fire Mater 29:61–69

    Article  Google Scholar 

  62. Periyasamy AP, Chilukoti GR (2010) Ultra high molecular weight polyethylene. Tech Textilien 55:50–55

    Google Scholar 

  63. Bhala R, Dhandhania V, Periyasamy AP (2012) Bio-finishing of fabrics. Asian Dye 9:45–49

    Google Scholar 

  64. Dhandhania V, Bhala R, Periyasamy AP (2012) Enhancing the value of textiles using bio-materials. Melliand Int 18:177–178

    Google Scholar 

  65. Periyasamy AP (2007) Bio-processing in textiles. Text Mag 48:9–15

    Google Scholar 

  66. Maryan AS, Montazer M, Damerchely R (2015) Discoloration of denim garment with color free effluent using montmorillonite based nano clay and enzymes: nano bio-treatment on denim garment. J Clean Prod 91:208–215

    Article  Google Scholar 

  67. Buschmann H-J, Knittel D, Schollmeyer E (2001) New textile applications of cyclodextrins. J Incl Phenom Macrocycl Chem 40:169–172

    Article  Google Scholar 

  68. Sricharussin W, Sopajaree C, Maneerung T, Sangsuriya N (2009) Modification of cotton fabrics with β-cyclodextrin derivative for aroma finishing. J Text Inst 100:682–687

    Article  Google Scholar 

  69. Abdel-Mohdy FA, Fouda MMG, Rehan MF, Aly AS (2008) Repellency of controlled-release treated cotton fabrics based on cypermethrin and prallethrin. Carbohydr Polym 73:92–97

    Article  Google Scholar 

  70. Ibrahim NA, E-Zairy WR, Eid BM (2010) Novel approach for improving disperse dyeing and UV-protective function of cotton-containing fabrics using MCT-β-CD. Carbohydr Polym 79:839–846

    Article  Google Scholar 

  71. Lim S-H, Hudson SM (2003) Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci Part C Polym Rev 43:223–269

    Article  Google Scholar 

  72. Knaul JZ, Hudson SM, Creber KAM (1999) Crosslinking of chitosan fibers with dialdehydes: proposal of a new reaction mechanism. J Polym Sci Part B Polym Phys 37:1079–1094

    Article  Google Scholar 

  73. Chung Y-S, Lee K-K, Kim J-W (1998) Durable press and antimicrobial finishing of cotton fabrics with a citric acid and chitosan treatment. Text Res J 68:772–775

    Article  Google Scholar 

  74. Hebeish A, Abdel-Mohdy FA, Fouda MMG et al (2011) Green synthesis of easy care and antimicrobial cotton fabrics. Carbohydr Polym 86:1684–1691

    Article  Google Scholar 

  75. Ibrahim NA, Eid BM, Elmaaty TMA, El-Aziz EA (2013) A smart approach to add antibacterial functionality to cellulosic pigment prints. Carbohydr Polym 94:612–618

    Article  Google Scholar 

  76. Gouda M, Keshk S (2010) Evaluation of multifunctional properties of cotton fabric based on metal/chitosan film. Carbohydr Polym 80:504–512

    Article  Google Scholar 

  77. Oliveira MF, Suarez D, Rocha JCB et al (2015) Electrospun nanofibers of polyCD/PMAA polymers and their potential application as drug delivery system. Mater Sci Eng C 54:252–261

    Article  Google Scholar 

  78. Martel B, Morcellet M, Ruffin D et al (2002) Capture and controlled release of fragrances by CD finished textiles. J Incl Phenom Macrocycl Chem 44:439–442

    Article  Google Scholar 

  79. Romi R, Lo NP, Bocci E et al (2005) Bioengineering of a cellulosic fabric for insecticide delivery via grafted cyclodextrin. Biotechnol Prog 21:1724–1730

    Article  Google Scholar 

  80. Gawish SM, Ramadan AM, Abo El-Ola SM, Abou El-Kheir AA (2009) Citric acid used as a cross-linking agent for grafting β-cyclodextrin onto wool fabric. Polym Plast Technol Eng 48:701–710

    Article  Google Scholar 

  81. El Ghoul Y, Martel B, Morcellet M et al (2007) Mechanical and physico-chemical characterization of cyclodextrin finished polyamide fibers. J Incl Phenom Macrocycl Chem 57:47–52

    Article  Google Scholar 

  82. Bajpai M, Gupta P, Bajpai SK (2010) Silver (I) ions loaded cyclodextrin-grafted-cotton fabric with excellent antimicrobial property. Fibers Polym 11:8–13

    Article  Google Scholar 

  83. Gulrajani ML, Brahma KP, Kumar PS, Purwar R (2008) Application of silk sericin to polyester fabric. J Appl Polym Sci 109:314–321. https://doi.org/10.1002/app.28061

    Article  Google Scholar 

  84. Belhaj Khalifa I, Ladhari N, Touay M (2012) Application of sericin to modify textile supports. J Text Inst 103:370–377

    Article  Google Scholar 

  85. Qin Y (2004) Absorption characteristics of alginate wound dressings. J Appl Polym Sci 91:953–957

    Article  Google Scholar 

  86. Qin Y (2008) Alginate fibres: an overview of the production processes and applications in wound management. Polym Int 57:171–180. https://doi.org/10.1002/pi.2296

    Article  Google Scholar 

  87. Shanmugasundaram OL, Gowda RVM (2011) Development and characterization of bamboo gauze fabric coated with polymer and drug for wound healing. Fibers Polym 12:15–20

    Article  Google Scholar 

  88. Heliopoulos NS, Papageorgiou SK, Galeou A et al (2013) Effect of copper and copper alginate treatment on wool fabric. Study of textile and antibacterial properties. Surf Coat Technol 235:24–31

    Article  Google Scholar 

  89. PDQ Integrative, Alternative, and Complementary Therapies Editorial Board (2017) Aromatherapy and essential oils (PDQ). PDQ Cancer Information Summaries. National Cancer Institute, Bethesda. https://www.ncbi.nlm.nih.gov/books/NBK65874/

  90. Thilagavathi G, Rajendrakumar K, Rajendran R (2005) Development of ecofriendly antimicrobial textile finishes using herbs. PSG CT, Coimbatore

    Google Scholar 

  91. Ahamed M, Hasabo A (2012) Synthesis and characterization of neem chitosan nanocomposites for development of antimicrobial cotton textiles. J Eng Fabr Fibers 7:136–141

    Google Scholar 

  92. Joshi M, Ali SW, Rajendran S (2007) Antibacterial finishing of polyester/cotton blend fabrics using neem (Azadirachta indica): a natural bioactive agent. J Appl Polym Sci 106:793–800

    Article  Google Scholar 

  93. Sathianarayanan MP, Bhat NV, Kokate SS, Walunj VE (2010) Antibacterial finish for cotton fabric from herbal products. Indian J Fiber Text Res 35:50–55

    Google Scholar 

  94. Varghese J, Tumkur VK, Ballal V, Bhat GS (2013) Antimicrobial effect of Anacardium Occidentale leaf extract against pathogens causing periodontal disease. Adv Biosci Biotechnol 4:15

    Article  Google Scholar 

  95. Chandrasekar S, Vijayakumar S, Rajendran R (2014) Application of chitosan and herbal nanocomposites to develop antibacterial medical textile. Biomed Aging Pathol 4:59–64. https://doi.org/10.1016/j.biomag.2013.10.007

    Article  Google Scholar 

  96. Bajpai D, Vankar PS (2007) Antifungal textile dyeing withMahonia napaulensis D.C. leaves extract based on its antifungal activity. Fibers Polym 8:487. https://doi.org/10.1007/BF02875870

    Article  Google Scholar 

  97. Sumithra M, Raaja NV (2012) Micro-encapsulation and nano-encapsulation of denim fabrics with herbal extracts. Indian J Fiber Text Res 37:321–327

    Google Scholar 

  98. Nithyakalyani D, Ramachandran T, Rajendran R, Mahalakshmi M (2013) Assessment of antibacterial activity of herbal finished surface modified polypropylene nonwoven fabric against bacterial pathogens of wound. J Appl Polym Sci 129:672–681. https://doi.org/10.1002/app.38765

    Article  Google Scholar 

  99. Teli MD (2016) Environmental textiles: testing and certification. In: Wang L (ed) Performance testing of textiles. Woodhead, Cambridge, pp 177–192

    Google Scholar 

  100. Bluesign (2017) Bluesign® system: uniting the entire textile supply chain. Bluesign, St Gallen. https://www.bluesign.com/industry

  101. Oeko-Tex (2006) Tailor-made solutions for the textile industry. Oeko-Tex, Zurich

    Google Scholar 

  102. Oeko-Tex (2017) Factsheet: Standard 100 by Oeko-Tex®. Oeko-Tex, Zurich, p 6. http://www.oeti.biz/oeti-de-wAssets/docs/Downloads-fuer-Seiten/OEKOTEX_Standard-100/STANDARD-100-by-OEKOTEX-R-_Standard_DE_EN.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravin Prince Periyasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Periyasamy, A.P., Venkatesan, H. (2019). Eco-materials in Textile Finishing. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_55

Download citation

Publish with us

Policies and ethics