Skip to main content

Polymers for Energy Applications

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Polymer science has been designated as “the gateway to the future,” as it deals with our capability to develop ever-more sophisticated materials to suit the desires of society and the planet. Polymers are already playing a critical role in saving energy and resources across a variety of applications, such as transport, packaging, healthcare, and buildings. Appreciations to their versatility, polymers have and will continue to enable a sustainable lifestyle. Polymer scientists are conducting a great deal of research into the potential for polymers to provide cutting-edge renewable energy technologies. Such avenues are photovoltaic, fuel cell, polymer semiconductors, LED (light-emitting diode), etc. This chapter elucidates some important polymers thoughtful effort of elaborating various such energy application schemes in line with the energy assembly, energy storage, dye sensitized electric cell, light emitting and sensing, perovskite electric cell, thermoelectrical generator, polymer composite for thermoelectrical generator, piezoelectric, triboelectric generator, and supercapacitor have been discussed for better understanding of the readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou G, Khan I, Smid J (1993) Solvent-free cation-conducting polysiloxane electrolytes with pendant oligo(oxyethylene) and sulfonate groups. J Macromol 26:2202–2208. https://doi.org/10.1021/ma00061a010

    Article  Google Scholar 

  2. Ohno H, Kobayashi N, Takeoka S, Ishizaka H, Tsuchida E (1990) Larger cations can move faster in solid polymer electrolytes. Solid State Ionics 40–41:655–658. https://doi.org/10.1016/0167-2738(90)90091-5

    Article  Google Scholar 

  3. Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (2017) 5 – Energy harvesting based on polymer. In: Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (eds) Polymer materials for energy and electronic applications. Academic Press, pp 151–196

    Google Scholar 

  4. Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (2017) 6 – Energy storage devices based on polymers. In: Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (eds) Polymer materials for energy and electronic applications. Academic Press, pp 197–242

    Google Scholar 

  5. Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (2017) 1 – Introduction. In: Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (eds) Polymer materials for energy and electronic applications. Academic Press, pp 1–8

    Google Scholar 

  6. Tsuchida E, Ohno H, Kobayashi N, Ishizaka H (1989) Poly[(ι-carboxy)oligo(oxyethylene) methacrylate] as a new type of polymeric solid electrolyte for alkali-metal ion transport. Macromolecules 22:1771–1775. https://doi.org/10.1021/ma00194a046

    Article  Google Scholar 

  7. Klein RJ, Runt J (2007) Plasticized single-ion polymer conductors: conductivity, local and segmental dynamics, and interaction parameters. J Phys Chem B 111:13188–13193. https://doi.org/10.1021/jp075517c

    Article  Google Scholar 

  8. Doeff MM, Reed JS (1998) Li ion conductors based on laponite/poly(ethylene oxide) composites. Solid State Ionics 113:109–115. https://doi.org/10.1016/S0167-2738(98)00367-1

    Article  Google Scholar 

  9. Kobayashi N, Uchiyama M, Tsuchida E (1985) Poly[lithium methacrylate-co-oligo(oxyethylene)methacrylate] as a solid electrolyte with high ionic conductivity. Solid State Ionics 17:307–311. https://doi.org/10.1016/0167-2738(85)90075-X

    Article  Google Scholar 

  10. Seitz ME, Chan CD, Opper KL, Baughman TW, Wagener KB, Winey KI (2010) Nanoscale morphology in precisely sequenced poly(ethylene-co-acrylic acid) zinc ionomers. J Am Chem Soc 132:8165–8174. https://doi.org/10.1021/ja101991d

    Article  Google Scholar 

  11. Peiffer DG, Weiss RA, Lundberg RD (1982) Microphase separation in sulfonated polystyrene ionomers. J Polym Sci B: Polym Phys Ed 20:1503–1509. https://doi.org/10.1002/pol.1982.180200815

    Article  Google Scholar 

  12. Lantman CW, MacKnight WJ, Lundberg RD (1989) Structural properties of ionomers. Annu Rev Mater Sci 19:295–317. https://doi.org/10.1146/annurev.ms.19.080189.001455

    Article  Google Scholar 

  13. Eisenberg A, Kim J-S (1998) Introduction to ionomers. Wiley, New York

    Google Scholar 

  14. Wang W, Tudryn GJ, Colby RJ, Winey KI (2011) Thermally driven ionic aggregation in poly(ethylene oxide)-based sulfonate ionomers. J Am Chem Soc 133:10826–10831. https://doi.org/10.1021/ja201405v

    Article  Google Scholar 

  15. Fragiadakis D, Dou S, Colby RH, Runt J (2008) Molecular mobility, ion mobility, and mobile ion concentration in poly(ethylene oxide)-based polyurethane ionomers. J Macromol 41:5723–5728. https://doi.org/10.1021/ma800263b

    Article  Google Scholar 

  16. Lu M, Runt J, Painter P (2009) An infrared spectrocopic study of a polyester copolymer ionomer based on poly(ethylene oxide). Macromolecules 42:6581–6587. https://doi.org/10.1021/ma900978d

    Article  Google Scholar 

  17. Sinha K, Maranas JK (2011) Segmental dynamics and ion association in PEO-based single ion conductors. Macromolecules 44:5381–5391. https://doi.org/10.1021/ma2005074

    Article  Google Scholar 

  18. Blazejczyk A, Szczupak M, Wieczorek W, Cmoch P, Appetecchi GB, Scrosati B, Kovarsky R, Golodnitsky D, Peled E (2005) Anion-binding calixarene receptors: synthesis, microstructure, and effect on properties of polyether electrolytes. Chem Mater 17:1535–1547. https://doi.org/10.1021/cm048679j

    Article  Google Scholar 

  19. Blazejczyk A, Wieczorek W, Kovarsky R, Goloditsky D, Peled E, Scanlon LG, Appetecchi GB, Scrosati B (2004) Novel solid polymer electrolytes with single Lithium-ion transport. J Electrochem Soc 10:A1762–A1766. https://doi.org/10.1149/1.1793714

    Article  Google Scholar 

  20. Golodnitsky D, Kovarsky RK, Mazor H, Rosenberg Yu, Lapides I, Peled E, Wieczorek W, Plewa A, Siekierski M, Kalita M, Settimi L, Scrosati B, Scanlon LG‘ (2007) Host-guest interactions in single-ion Lithium polymer electrolyte. J Electrochem Soc 154:A547–A553. https://doi.org/10.1149/1.2722538

    Article  Google Scholar 

  21. Krawiec W, Scanlon LG,J, Fellner JP, Vaia RA, Vasudevan S, Giannelis EP (1995) Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J Power Sources 54:310–315. https://doi.org/10.1016/0378-7753(94)02090-P

    Article  Google Scholar 

  22. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458. https://doi.org/10.1038/28818

    Article  Google Scholar 

  23. Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97-98:644–648. https://doi.org/10.1016/S0378-7753(01)00748-0

    Article  Google Scholar 

  24. Tambelli CC, Bloise AC, Rosário AV, Pereira EC, Magon C (2002) Characterisation of PEO–Al2O3 composite polymer electrolytes. J Electrochim Acta 47:1677–1682. https://doi.org/10.1016/S0013-4686(01)00900-8

    Article  Google Scholar 

  25. Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander B-E (2003) Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte. J Power Sources 119:409–414

    Article  Google Scholar 

  26. Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics 118:73–79. https://doi.org/10.1016/S0167-2738(98)00457-3

    Article  Google Scholar 

  27. Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147:1718–1721. https://doi.org/10.1149/1.1393423

    Article  Google Scholar 

  28. Tominaga Y, Asai S, Sumita M, Panero S, Scrosati B (2005) A novel composite polymer electrolyte: effect of mesoporous SiO2 on ionic conduction in poly(ethylene oxide)–LiCF3SO3 complex. J Power Sources 146:402–406. https://doi.org/10.1016/j.jpowsour.2005.03.035

    Article  Google Scholar 

  29. Derrien G, Hassoun J, Simone Sacchetti S, Stefania Panero S (2009) Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler. Solid State Ionics 180:1267–1271. https://doi.org/10.1016/j.ssi.2009.07.006

    Article  Google Scholar 

  30. Croce F, Sacchetti S, Scrosati B (2006) Advanced, high-performance composite polymer electrolytes for lithium batteries. J Power Sources 161:560–564. https://doi.org/10.1016/j.jpowsour.2006.03.069

    Article  Google Scholar 

  31. Croce F, Settimi L, Scrosati B (2006) Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem Commun 8:364–368. https://doi.org/10.1016/j.elecom.2005.12.002

    Article  Google Scholar 

  32. Wen Z, Itoh T, Ikeda M, Hirata N, Kubo M, Yamamoto O (2000) Characterization of composite electrolytes based on a hyperbranched polymer. J Power Sources 90:20–26. https://doi.org/10.1016/S0378-7753(00)00442-0

    Article  Google Scholar 

  33. Ai-Qin Z, Yong Z, Li-Zhen W, Li Xiao-Feng W (2011) Electrosynthesis and capacitive performance of polyaniline–polypyrrole composite. Polym Compos 32:1–5. https://doi.org/10.1002/pc.20983

    Article  Google Scholar 

  34. Kumar R;A, Subramania A, Sundaram NTK, Kumar GV, Baskaran I (2007) Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte. J Membr Sci 300:104–110. https://doi.org/10.1016/j.memsci.2007.05.014

    Article  Google Scholar 

  35. Xiong H-M, Zhao X, Chen J-S (2001) New polymer−inorganic nanocomposites: PEO−ZnO and PEO−ZnO−LiClO4 films. J Phys Chem B 105:10169–10174. https://doi.org/10.1021/jp0103169

    Article  Google Scholar 

  36. Sun HY, Sohn H-J, Yamamoto O, Takeda Y, Imanishi N (1999) Enhanced Lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO3. J Electrochem Soc 146:1672–1676. https://doi.org/10.1149/1.1391824

    Article  Google Scholar 

  37. Sun HY, Takeda Y, Imanishi N, Yamamoto O, Sohn H-J (2000) Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J Electrochem Soc 147:2462–2467. https://doi.org/10.1149/1.1393554

    Article  Google Scholar 

  38. Reddy JP, Chu PP, Kumar JS, Rao UVS (2006) Inhibited crystallization and its effect on conductivity in a nano-sized Fe oxide composite PEO solid electrolyte. J Power Sources 161:535–540. https://doi.org/10.1016/j.jpowsour.2006.02.104

    Article  Google Scholar 

  39. Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2:695–700. https://doi.org/10.1038/nmat980

    Article  Google Scholar 

  40. Karlsson C, Best AS, Swenson J, Howells WS, Börjesson LM (2003) Polymer dynamics in 3PEG–LiClO4–TiO2 nanocomposite polymer electrolytes. J Chem Phys 118:4206–4212. https://doi.org/10.1063/1.1540980

    Article  Google Scholar 

  41. MacGlashan GS, Andreev YG, Bruce PG (1999) Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 398:792–794. https://doi.org/10.1038/19730

    Article  Google Scholar 

  42. Dissanayake MAKL (2004) Nano-composite solid polymer electrolytes for solid state ionic devices. Ionics 10:221–225. https://doi.org/10.1007/BF02382820

    Article  Google Scholar 

  43. Karlsson C, Best AS, Swenson J, Kohlbrecher J, Börjesson L (2005) A SANS study of 3PEG−LiClO4−TiO2 nanocomposite polymer electrolytes. Macromolecules 38:6666–6671. https://doi.org/10.1021/ma050417v

    Article  Google Scholar 

  44. Alloin F, D’Aprea A, Kissi NE, Dufresne A, Bossard F‘ (2010) Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochim Acta 55:5186–5194. https://doi.org/10.1016/j.electacta.2010.04.034

    Article  Google Scholar 

  45. Wen Z, Wu M, Itoh T, Kubo M, Lin Z, Yamamoto O (2002) Effects of alumina whisker in (PEO)8–LiClO4-based composite polymer electrolytes. Solid State Ionics 148:185–191. https://doi.org/10.1016/S0167-2738(02)00106-6

    Article  Google Scholar 

  46. Gray FM, MacCallum JR, Vincent CA, Giles JRM (1988) Novel polymer electrolytes based on ABA block copolymers. Macromolecules 21:393–397. https://doi.org/10.1021/ma00180a018

    Article  Google Scholar 

  47. Giles JRM, Gray FL, MacCallum JR, Vincent CA (1987) Synthesis and characterization of ABA block copolymer-based polymer electrolytes. Polymer 28:1977–1981. https://doi.org/10.1016/0032-3861(87)90309-0

    Article  Google Scholar 

  48. Soo PP, Huang B, Jang Y-I, Chiang Y-M, Sadoway DR, Mayes AM (1999) Rubbery block copolymer electrolytes for solid-state rechargeable Lithium batteries. J Electrochem Soc 146:32–37. https://doi.org/10.1149/1.1391560

    Article  Google Scholar 

  49. Jannasch P (2002) Ionic conductivity in physical networks of polyethylene−polyether−polyethylene triblock copolymers. Chem Mater 14:2718–2724. https://doi.org/10.1021/cm021103e

    Article  Google Scholar 

  50. Kishimoto K, Hoshio M, Mukai T, Yoshizawa M, Ohno H, Kato T (2003) Nanostructured anisotropic ion-conductive films. J Am Chem Soc 125:3196–3197. https://doi.org/10.1021/ja029750u

    Article  Google Scholar 

  51. Nitani T, Shimada M, Kawamura K, Dokko K, Rho Y-H, Kamamura K (2005) Synthesis of Li + ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochem Solid State Lett 8:A385–A388. https://doi.org/10.1149/1.1940491

    Article  Google Scholar 

  52. Singh M, Odusanya O, Wilmes GM, Eitouni HB, Gomez ED, Patel AJ, Chen VL, Park MJ, Fragouli P, Iatrou H, Hadjichristidis N, Cookson D, Balsara N (2007) Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40:4578–4585. https://doi.org/10.1021/ma0629541

    Article  Google Scholar 

  53. Ioannou EF, Mountrichas G, Pispas S, Kamitsos EI, Floudas G (2008) Lithium ion induced nanophase ordering and ion mobility in ionic block copolymers. Macromolecules 41:6183–6190. https://doi.org/10.1021/ma8008542

    Article  Google Scholar 

  54. Xiao Q, Wang X, Li W, Li Z, Zhang T, Zhang H (2009) Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. J Membr Sci 334:117–122. https://doi.org/10.1016/j.memsci.2009.02.018

    Article  Google Scholar 

  55. Panday A, Mullin S, Gomez ED, Wnankule N, Chen VL, Hexemar A, Pople J, Balsara NP (2009) Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 42:4632–4637. https://doi.org/10.1021/ma900451e

    Article  Google Scholar 

  56. Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc 157:A846–A849. https://doi.org/10.1149/1.3428710

    Article  Google Scholar 

  57. Mullin SA, Stone GM, Panday A, Balsara NP (2011) Salt diffusion coefficients in block copolymer electrolytes. J Electrochem Soc 158:A619–A627. https://doi.org/10.1149/1.3563802

    Article  Google Scholar 

  58. Cho B-K, Jain A, Gruner SM, Weisner U (2004) Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305:1598–1601. https://doi.org/10.1126/science.1100872

    Article  Google Scholar 

  59. Epps TH III, Bailey TS, Waletzko R, Bates FS (2003) Phase behavior and block sequence effects in Lithium perchlorate-doped poly(isoprene-b-styrene-b-ethylene oxide) and poly(styrene-b-isoprene-b-ethylene oxide) triblock copolymers. Macromolecules 36:2873–2881. https://doi.org/10.1021/ma021231o

    Article  Google Scholar 

  60. Wanakule NS, Panday A, Mullin SA, Gann E, Hexemer A, Balsara NP (2009) Ionic conductivity of block copolymer electrolytes in the vicinity of order−disorder and order−order transitions. Macromolecules 42:5642–5651. https://doi.org/10.1021/ma900401a

    Article  Google Scholar 

  61. Ruzette A-VG, Soo PP, Sadoway DR, Mayes AM (2001) Melt-formable block copolymer electrolytes for Lithium rechargeable batteries. J Electrochem Soc 148:A537–A543. https://doi.org/10.1149/1.1368097

    Article  Google Scholar 

  62. Ohtake T, Ogasawara M, Ito-Akita K, Nishina N, Ujie E, Ohno H, Kato T (2000) Liquid-crystalline complexes of mesogenic dimers containing oxyethylene moieties with LiCF3SO3: self-organized ion conductive materials. Chem Mater 12:782–789. https://doi.org/10.1021/cm990706w

    Article  Google Scholar 

  63. Ghosh S, Maiyalagan T, Basu RN (2016) Nanostructured conducting polymers for energy applications: towards a sustainable platform. Nanoscale 8:6921–6947. https://doi.org/10.1039/C5NR08803H

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanabasava V. Ganachari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ganachari, S.V. (2019). Polymers for Energy Applications. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_194

Download citation

Publish with us

Policies and ethics