Skip to main content

DNA Nanotechnology

  • Reference work entry
  • First Online:
Book cover Handbook of Ecomaterials

Abstract

Since from the past few decades DNA appeared as an excellent molecular building block for the synthesis of nanostructures because of its probable encoded and confirmation intra- and intermolecular base pairing, various case strategies and consistent assembly techniques have been established to manipulate DNA nanostructures to at higher complexity. The capability to develop DNA construction with precise special control has permitted scientists to discover novel applications in many ways, such as scaffold development, sensing applications, nanodevices, computational applications, nanorobotics, nanoelectronics, biomolecular catalysis, disease diagnosis, and drug delivery. The present chapter emphasizes to brief the opportunities, challenges, and future prospective on DNA nanotechnology and its advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen Y-J, Groves B, Muscat RA, Seelig G (2015) DNA nanotechnology from the test tube to the cell. https://doi.org/10.1038/NNANO.2015.195

    Article  Google Scholar 

  2. Bloomfield VA, Crothers DM, Ignacio Tinoco J (2000) Nucleic acids: structures, properties and functions. University Science Books, Sausalito

    Google Scholar 

  3. Carlson R (2009) The changing economics of DNA synthesis. Nat Biotechnol 27:1091–1094

    Article  Google Scholar 

  4. Dittmer WU, Reuter A, Simmel FCA (2004) DNA-based machine that can cyclically bind and release thrombin. Angew Chem Int Ed 43:3550–3553

    Article  Google Scholar 

  5. Yurke B, Mills AP Jr, Cheng SL (1999) DNA implementation of addition in which the input strands are separate from the operator strands. Biosystems 52:165–174

    Article  Google Scholar 

  6. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429

    Article  Google Scholar 

  7. Ko S, Liu H, Chen Y, Mao C (2008) DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules 9:3039–3043

    Article  Google Scholar 

  8. Zhang F, Nangreave J, Liu Y, Yan H (2014) Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc 136:11198–11211

    Article  Google Scholar 

  9. Grabow WW, Jaeger L (2014) RNA self-assembly and RNA nanotechnology. Acc Chem Res 47:1871–1880

    Article  Google Scholar 

  10. Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474

    Article  Google Scholar 

  11. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278

    Article  Google Scholar 

  12. Choi HMT et al (2010) Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol 28:1208–1212

    Article  Google Scholar 

  13. Choi HMT, Beck VA, Pierce NA (2014) Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8:4284–4294

    Article  Google Scholar 

  14. Keefe A, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  Google Scholar 

  15. Bairoch A (2000) The enzyme database in 2000. Nucleic Acids Res 28:304–305

    Article  Google Scholar 

  16. Hammes GG, Wu CW (1971) Regulation of enzyme activity. Science 172:1205–1211

    Article  Google Scholar 

  17. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  Google Scholar 

  18. Khosla C, Harbury PB (2001) Modular enzymes. Nature 409:247–252

    Article  Google Scholar 

  19. Ostermeier M (2009) Designing switchable enzymes. Curr Opin Struct Biol 19:442–448

    Article  Google Scholar 

  20. Fu Y, Zeng D, Chao J, Jin Y, Zhang Z, Liu H, Li D, Ma H, Huang Q, Gothelf KV, Fan C (2012) Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. J Am Chem Soc 135:696–702

    Article  Google Scholar 

  21. Wilner OI, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I (2009) Enzyme cascades activated on topologically programmed DNA scaffolds. Nat Nanotechnol 4:249–254

    Article  Google Scholar 

  22. Fu JL, Liu MH, Liu Y, Woodbury NW, Yan H (2012) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134:5516–5519

    Article  Google Scholar 

  23. Fu J, Yang Y, Buck AJ, Liu M, Liu Y, Walter NG, Woodbury NW, Yan H (2014) Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat Nanotechnol 9:531–536

    Article  Google Scholar 

  24. Saghatelian A, Guckian KM, Thayer DA, Ghadiri MRJ (2003) DNA detection and signal amplification via an engineered allosteric enzyme. Am Chem Soc 125:344–345

    Article  Google Scholar 

  25. Simon P, Dueymes C, Fontecave M, Decout JL (2005) DNA detection through signal amplification by using NADH: flavin oxidoreductase and oligonucleotide-flavin conjugates as cofactors. Angew Chem Int Ed 44:2764–2767

    Article  Google Scholar 

  26. Guo PX (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  Google Scholar 

  27. Shukla GC, Haque F, Tor Y, Wilhelmsson LM, Toulmé J-J, Isambert H, Guo P, Rossi JJ, Tenenbaum SA, Shapiro BA (2011) A boost for the emerging field of RNA nanotechnology. ACS Nano 5:3405–3418

    Article  Google Scholar 

  28. Lai YT, Cascio D, Yeates TO (2012) Structure of a 16-nm cage designed by using protein oligomers. Science 336:1129

    Article  Google Scholar 

  29. King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, Andre I, Gonen T, Yeates TO, Baker D (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336:1171–1174

    Article  Google Scholar 

  30. Li XM, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng YF (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590

    Article  Google Scholar 

  31. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    Article  Google Scholar 

  32. Scheres S (2014) Foundations of nanoscience: self-assembled architectures and devices. Foresight Institute, Palo Alto, p 55

    Google Scholar 

  33. Ke YG, Bellot G, Voigt NV, Fradkov E, Shih WM (2012) Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. Chem Sci 3:2587–2597

    Article  Google Scholar 

  34. Lin CX, Perrault SD, Kwak M, Graf F, Shih WM (2013) Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res 41:e40

    Article  Google Scholar 

  35. Martin TG, Dietz H (2012) Magnesium-free self-assembly of multi-layer DNA objects. Nat Commun 3:1103

    Article  Google Scholar 

  36. Myhrvold C, Dai MJ, Silver PA, Yin P (2013) Isothermal self-assembly of complex DNA structures under diverse and biocompatible conditions. Nano Lett 13:4242–4248

    Article  Google Scholar 

  37. Mei QA, Wei XX, Su FY, Liu Y, Youngbull C, Johnson R, Lindsay S, Yan H, Meldrum D (2011) Stability of DNA origami nanoarrays in cell lysate. Nano Lett 11:1477–1482

    Article  Google Scholar 

  38. Castro CE, Kilchherr F, Kim DN, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H (2011) A primer to scaffolded DNA origami. Nat Methods 8:221–229

    Article  Google Scholar 

  39. Modi S, Nizak C, Surana S, Halder S, Krishnan Y (2013) Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat Nanotechnol 8:459–467

    Article  Google Scholar 

  40. Fu YM, Zeng DD, Chao J, Jin YQ, Zhang Z, Liu HJ, Li D, Ma HW, Huang Q, Gothelf KV, Fan CH (2013) Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. J Am Chem Soc 135:696–702

    Article  Google Scholar 

  41. Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9(1):014109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayachandra S. Yaradoddi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yaradoddi, J.S. et al. (2019). DNA Nanotechnology. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_191

Download citation

Publish with us

Policies and ethics