Skip to main content

Advanced Materials from Forests

  • Reference work entry
  • First Online:
Book cover Handbook of Ecomaterials

Abstract

Forests form an extremely important part of the global ecosystem and especially with regard to carbon dioxide emissions. They also provide a valuable source of sustainable materials. Forests are under threat in every part of the world. The lack of economic value and activity has led to population drift from forest areas and the subsequent lack of management of forests. To change this situation, one needs to add value to the products of forests. This chapter examines how to achieve this and evaluates the progress to date. The forests are rich in raw materials, and the chapter reviews the raw materials under the headings of wood, fiber products, and chemical products. Of particular interest are composite formed from forest products which is an emerging area. The chapter focuses on the potential use of rosin (a product obtained from pine trees) and on nanocellulose fibrils and also explores this potential and identifies applications which may develop in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strategic research and inovation agenda for 2020, forest based sector technology platform 2013. http://newwww.forestplatform.org/system/attachments/files/000/000/113/original/2013_Strategic_Research_and_Innovation_Agenda_for_2020.pdf?1484928110

  2. Hag N, Harrison P (1996) Corros Prev Control 43:162

    Google Scholar 

  3. European forest types categories and types for sustainable forest management reporting and policy ISSN 1725-2237 EEA Technical report No 9/2006

    Google Scholar 

  4. Muthu SS (2015) The carbon footprint handbook. CRC Press, Raton

    Book  Google Scholar 

  5. Ragonnaud G. Fact sheets on the European Union and forests – 06/2017. http://www.europarl.europa.eu/RegData/etudes/fiches_techniques/2013/050211/04A_FT(2013)050211_EN.pdf

  6. Sustainable forest management, Biodiversity and livelihoods. A good practice guide. 2010. https://www.cbd.int/development/doc/cbd-good-practice-guide-forestry-booklet-web-en.pdf

  7. Forest Products Laboratory (1999) Wood handbook: wood as an engineering material. Forest Products Society, Madison. 470 pp

    Book  Google Scholar 

  8. Kretschmann DE, Winandy J, Clausen C, Wiemann M, Bergman R, Rowell R, Zerbe J, Beecher J, White R, McKeever D, Howard J (2007) Wood. In: Kirk-Othmer (ed) Encyclopedia of chemical technology. Wiley, New York, 60 p

    Google Scholar 

  9. Youngs RL (2009) Forests and forest plants – Vol. II – History, nature, and products of wood. In: Owens JN, Gyde Lunday H (eds) Encyclopedia of life support systems (EOLSS), Developed under the auspices of the UNESCO. Eolss Publishers, Paris

    Google Scholar 

  10. Souza F, Del Menezzi CHS, Júnior GB (2011) Material properties and nondestructive evaluation of laminated veneer lumber (LVL) made from Pinus oocarpa and P. kesiya. Eur J Wood Prod 69:183–192. https://doi.org/10.1007/s00107-010-0415-0

    Article  Google Scholar 

  11. Youngquist JA (1985) Laminated veneer lumber – a high quality structural lumber substitute. In: Symposium on forest products research international – achievements and the future, vol. 6. April 22–26; Pretoria, Republic of South Africa. South African Council for Scientific and Industrial Research National Timber Research Institute, 13 p

    Google Scholar 

  12. Shukla SR, Rao RV, Sharma SN (1999) Evaluation of strength properties of parallel splint lumber (PSL) and its comparison with laminated veneer lumber (LVL) rubber wood and teak. Holz Roh Werkst 57:267–270

    Article  Google Scholar 

  13. Gaspar F, Cruz H, Nunes L, Gomes A (2010) Production of glued laminated timber with copper azole treated maritime pine. Eur J Wood Prod 68:207–218

    Article  Google Scholar 

  14. Brandner R, Flatscher G, Ringhofer A, Schickhofer G, Thiel A (2016) Cross laminated timber (CLT): overview and development. Eur J Wood Prod 74:331–351. https://doi.org/10.1007/s00107-015-0999-5

    Article  Google Scholar 

  15. Ayrilmis N (2007) Effect of panel density on dimensional stability of medium and high density fiberboards. J Mater Sci 42:8551. https://doi.org/10.1007/s10853-007-1782-8

    Article  Google Scholar 

  16. Kurt R, Aslan K, Çavuş V (2013) Influence of press pressure on the properties of parallel strand lumber glued with urea formaldehyde adhesive. Bioresources 8(3):4029–4037

    Article  Google Scholar 

  17. Arwade SR, Winans R, Clouston P (2010) Variability of the compressive strength of parallel strand lumber. J Eng Mech 136(4):405–412. https://doi.org/10.1061/ASCEEM.1943-7889.0000079

    Article  Google Scholar 

  18. Quiroga A, Rintoul I (2015) Mechanical properties of hierarchically structured wood–cement composites. Constr Build Mater 84:253–260. https://doi.org/10.1016/j.conbuildmat.2015.02.091

    Article  Google Scholar 

  19. Bednarz A, Frącz W, Janowski G (2016) The use of image analysis in evaluation of the fibers orientation in Wood-polymer composites (WPC). Open Eng 6:737–741. https://doi.org/10.1515/eng-2016-0099

    Article  Google Scholar 

  20. Cai Z, Muehl JH, Winandy JE (2006) Effects of panel density and mat moisture content on processing medium density fiberboard. For Prod J 56(10):20–25

    Google Scholar 

  21. Aydin I, Demirkir C, Colak S, Salcă E-A (2013) The effect of veneers roughness on bonding and some mechanical properties of plywood. PRO LIGNO 9(1):41–49

    Google Scholar 

  22. Gaspar F (2016) Estruturas de madeira lamelada-colada – Viabilidade da utilização de madeira de pinho bravo tratada com produto preservador. MSc thesis, University of Lisbon, Instituto Superior Técnico

    Google Scholar 

  23. Azambuja MA, Dias AA (2002) Use of castor oil-based polyurethane adhesive in the production of glued laminated timber. In: Proceedings of 7th world conference on timber engineering, Shah Alam, p 139–146

    Google Scholar 

  24. Jesus JMH, Calil JC, Chierice GO (2000) Castor oil polyurethane adhesive for glulam. In: 6th world conference on timber engineering, British Columbia

    Google Scholar 

  25. Grøstad K, Pedersen A (2010) Emulsion polymer isocyanates as wood adhesive: a review. J Adhes Sci Technol 24:1357–1381. https://doi.org/10.1163/016942410X500981

    Article  Google Scholar 

  26. Aro MD, Brashaw BK, Donahue PK (2014) Mechanical and physical properties of thermally modified plywood and oriented strand board panels. For Prod J 64(7/8):281–289. https://doi.org/10.13073/FPJ-D-14-00037

    Article  Google Scholar 

  27. Ozen E, Yeniocak M, Goktas O, Alma MH, Yilmaz F (2014) Antimicrobial and antifungal properties of madder root (Rubia tinctorum) colorant used as an environmentally-friendly wood preservative. Bioresources 9(2):1998–2009

    Google Scholar 

  28. Sen S, Tascioglu C, Tırak K (2009) Fixation, leachability, and decay resistance of wood treated with some commercial extracts and wood preservative salts. Int Biodeterior Biodegrad 63:135–141. https://doi.org/10.1016/j.ibiod.2008.07.007

    Article  Google Scholar 

  29. Brocco VF, Paes JB, Costa LG, Brazolin S, Arantes MDC (2017) Potential of teak heartwood extracts as a natural wood preservative. J Clean Prod 142:2093–2099. https://doi.org/10.1016/j.jclepro.2016.11.074

    Article  Google Scholar 

  30. Kirker GT, Blodgett AB, Arango RA, Lebow PK, Clausen CA (2013) The role of extractives in naturally durable wood species. Int Biodeterior Biodegrad 82:53–58. https://doi.org/10.1016/j.ibiod.2013.03.007

    Article  Google Scholar 

  31. Oramahi HA, Diba F, Nurhaida F (2014) New bio preservatives from lignocelluloses biomass bio-oil for anti termites Coptotermes curvignathus holmgren. Procedia Environ Sci 20:778–784. https://doi.org/10.1016/j.proenv.2014.03.094

    Article  Google Scholar 

  32. Syofuna A, Banana AY, Nakabonge G (2012) Efficiency of natural wood extractives as wood preservatives against termite attack. Maderas Cienc Tecnol 14:155–163. https://doi.org/10.4067/S0718-221X2012000200003

    Article  Google Scholar 

  33. Cabrera Y, Morrell JJ (2012) Use of totally carbon-based preservatives to improve the performance of naturally durable woods. Int Biodeterior Biodegrad 70:27–30. https://doi.org/10.1016/j.ibiod.2011.10.015

    Article  Google Scholar 

  34. Durmaz S, Erisir E, Yildiz UC, Kurtulus OC (2015) Using Kraft black liquor as a wood preservative. Procedia Soc Behav Sci 195:2177–2180. https://doi.org/10.1016/j.sbspro.2015.06.291

    Article  Google Scholar 

  35. Calheiros JL, Meneses E. President, Junta Nacional da Cortiça, Portugal. The cork industry in Portugal. http://www.fao.org/docrep/x5362e/x5362e03.htm#TopOfPage

  36. Santos PT, Pinto S, Marques PAAP, Pereira AB, Alves de Sousa RJ (2017) Agglomerated cork: a way to tailor its mechanical properties. Compos Struct 178:277–287

    Article  Google Scholar 

  37. Fernandes EM, Correlo VMMJF, Reis RL (2014) Polypropylene-based cork–polymer composites: processing parameters and properties. Compos Part B 66:210–223

    Article  Google Scholar 

  38. Queiroga CL, Silva GF, Dias PC, Possenti A, de Carvalho JE (2000) J Ethnopharmacol 72:465–468

    Article  Google Scholar 

  39. Gil L, Moiteiro C (2002) Ullmann encyclopedia of industrial chemistry, vol 9. Wiley-VCH, Weinheim, pp 503–522

    Google Scholar 

  40. Llorach R, Espín JC, Tomás-Barberán FA, Ferreres F (2003) J Agric Food Chem 51:2181–2187

    Article  Google Scholar 

  41. Moiteiro C, Justino F, Tavares R, Marcelo-Curto MJ, Florencio MH (2001) J Nat Prod 64:1273–1277

    Article  Google Scholar 

  42. Simandi B, Kristo ST, Kery A, Selmeczi LK, Kmecz I, Kemeny S (2002) J Supercrit Fluids 23(2):135–142

    Article  Google Scholar 

  43. Cichewicz RH, Kouzi SA (2004) Med Res Rev 24(1):90–114

    Article  Google Scholar 

  44. Traditional tools used on wood processing. Source: http://s3.amazonaws.com/finewoodworking.s3.tauntoncloud.com/app/uploads/2016/09/06200951/ToolCab-main.jpg

  45. Reference sourced from https://nonagon.style/

  46. Stevens ES (2002) Green plastics. Princeton University Press, Oxford

    Google Scholar 

  47. Hinestroza J, Netravali AN (eds) (2014) Cellulose based composites: new green nanomaterials. Wiley VCH, Weinheim

    Google Scholar 

  48. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose a tiny fiber with huge Applications. Curr Opin Biotechnol 39:76–88

    Article  Google Scholar 

  49. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE et al (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  Google Scholar 

  50. Lu Y, Tekinalp L, Eberle CC, Peter W, Naskar AK, Ozcan S (2014) Nanocellulose in polymer composites and biomedical applications. TAPPI J 13(6):47–53

    Google Scholar 

  51. Lee K, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27

    Article  Google Scholar 

  52. Winks M (1999) Function of plant SMs and their exploitation in biotechnology. Sheffield Academic Press, Sheffield

    Google Scholar 

  53. Coppen JJW (1995) Flavours and fragrances of plant origin. Food and agriculture organization of the United Nations, FAO, Rome, p 68. Chapter 8

    Google Scholar 

  54. Adams DC, Pfister JA, Short RE, Cates RG, Knapp BW, Wiedmeier RD (1992) Pine needle effects on in vivo and in vitro digestibility of crested wheatgrass. J Range Manag 45:249–253

    Article  Google Scholar 

  55. Schales C, Gerlach H, Koster J (1993) Investigation on the antibacterial effect of conifer needle oils on bacteria isolated from feces of captive capercaillies (Tetrao urogallus). J Vet Med 40:381–390

    Article  Google Scholar 

  56. Ibrahim R, Varin L, DeLuca V, Romeo J (2000) Terpenoids in conifers. In: Evolution of metabolic pathways. Elsevier, Oxford, p 111

    Google Scholar 

  57. Adams A, Demyttenaere J, De Kimpe N (2003) Biotransformation of (R)-(+)- and (S)-(−)- limonene to α-terpineol by Penicillium digitatum – investigation of the culture conditions. Food Chem 80:525–534

    Article  Google Scholar 

  58. Adams TB, Gavin CL, McGowen MM, Waddell WJ, Cohen SM, Feron VJ (2011) The FEMA GRAS assessment of aliphatic and aromatic terpene hydrocarbons used as flavor ingredients. Food Chem Toxicol 49:2471–2494

    Article  Google Scholar 

  59. Uhlig H (1971) Corrosion and corrosion control. Wiley, New York

    Google Scholar 

  60. Enos HI, Harris GC, Hedrick GW (1968) In: Standen A (ed) Kirk-Othmer encyclopedia of chemical technology, vol 17, 2nd edn. Wiley Interscience, New York, p 475

    Google Scholar 

  61. Stonecipher WD, Turner RW (1970) In: Bikales NM (ed) Encyclopedia of polymer science and technology, vol 12. Wiley Interscience, New York, p 139

    Google Scholar 

  62. Brown JR, Mathys Z (1997) Composites 28A:675

    Article  Google Scholar 

  63. Liua H, Cui S, Shanga S, Wanga D, Song J (2013) Properties of rosin-based waterborne polyurethanes/cellulose nanocrystals composites. Carbohydr Polym 96:510–515

    Article  Google Scholar 

  64. Sonti SS, Barbero EJ (1996) J Reinf Plast Compos 15:701

    Article  Google Scholar 

  65. Sorathia U, Dapp T (1997) International SAMPE Symposium and Exhibition 42:1020

    Google Scholar 

  66. Mahendra V, Mitchell GR, Mateus AJS. Proceedings of the conference on the development of rosins as potential eco-foams from pine derived resins, biofoams, Sorrento, October 2015

    Google Scholar 

  67. Kaith BS, Jindal R, Sharma R (2015) Synthesis of a Gum rosin alcohol-poly(acrylamide) based adsorbent and its application in removal of malachite green dye from waste water. RSC Adv 5:43092–43104. https://doi.org/10.1039/c5ra04256a

    Article  Google Scholar 

  68. Nirmala R, Woo-il B, Navamathavan R, Kalpana D, Lee YS, Kim HY (2013) Influence of antimicrobial additives on the formation of rosin nanofibers via Electrospinning. Colloids Surf B: Biointerfaces 104:262–267

    Article  Google Scholar 

  69. Fejerskov O, Nyvad B, Kidd E (2015) Dental caries: the disease and its clinical management, 3rd edn. Wiley Blackwell, Oxford

    Google Scholar 

  70. Dawes C (2003) What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc 69(11):722–724

    MathSciNet  Google Scholar 

  71. Aoba T (2004) Solubility properties of human tooth mineral and pathogenesis of dental caries. Oral Dis 10:249–257

    Article  Google Scholar 

  72. Falbo MM, Elassal P, Greving TA, McHale WA, Latta MA, Gross SM (2013) The control of phosphate ion release from ion permeable microcapsules formulated in to rosin varnish and resin glaze. Dent Mater 29(7):804–813

    Article  Google Scholar 

  73. Ates S, Kara HR, Olgun C, Ozkan OE (2017) Effects of heat treatment on some properties of MDF (mediumdensity fiberboard). Wood Mater Sci Eng 12(3):158–164. https://doi.org/10.1080/17480272.2015.1073176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhura Mahendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mitchell, G., Gaspar, F., Mateus, A., Mahendra, V., Sousa, D. (2019). Advanced Materials from Forests. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_189

Download citation

Publish with us

Policies and ethics