Skip to main content

Ecofriendly Nanomaterials for Sustainable Photocatalytic Decontamination of Organics and Bacteria

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Rampant pollution of water/air due to hazardous industrial effluents and harmful bacteria has overwhelmingly threatened the very existence and well-being of ecosystem and mankind. According to 2017 survey by the World Health Organization (WHO), 844 million people lack access to safe drinking water. Water contamination occurs mainly due to discharge of improper or untreated wastewater dislodged into natural water reservoirs expedited by urbanization and industrial development. Such circumstances have sparked a need to develop cost-effective, energy-efficient technologies for environment remediation. Photocatalysis serves as a panacea to utilize green, omnipresent, and inexhaustible solar irradiation to facilitate redox reactions for decontamination of various pollutants.

The chapter commences with background to the environmental problems faced by mankind, followed by working principle of photocatalysis and state-of-the-art progress in development of photocatalytic materials. The key challenge lies in designing materials with ability to harvest entire spectrum of solar irradiation (5% UV, 47% visible, and 47% infrared) to fullest efficiency. Hence, the attention of researchers has shifted from UV-responsive materials to alternative visible light-active materials. To complement these efforts, strategies such as band gap engineering, heterojunction fabrication, induction of electric field, tuning defects, and morphology modification are adopted.

Nevertheless, green synthesis of highly efficient photocatalysts and their recyclability still remains a challenge. Hence, dedicated efforts toward alternative ecofriendly materials were made. A concise introduction to a broad range of newer carbon-based materials like carbon quantum dots, graphene and graphene oxide, graphitic carbon nitride, and photocatalysts with induced magnetism is offered. It also gives account of degradation mechanisms, fate of pollutants, their toxicity and utilization for bacterial disinfection. The recent trends in exploring and designing of nanomaterials and their wider ramifications toward pollution abatement are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) WHO report on Progress on Drinking Water, Sanitation and Hygiene Update and SDG Baselines 2017, http://www.who.int/water_sanitation_health/publications/JMP-2017-report-final-highlights.pdf?ua=1 (b) Richardson SD, Ternes TA (2014) Anal Chem 86:2913(c) Pedro Monzonis, M.; Solera Solera, A.; Ferrer Polo, FJ.; Estrela Monreal, T.; Paredes Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology. (527):482-493. doi:10.1016/j.jhydrol.2015.05.003

    Google Scholar 

  2. (a) Mao SS, Chen X (2007) Chem Rev 107: 2891–2959 (b) Ohtani B (2010) J Photochem Photobiol C Photochem Rev 11: 157

    Google Scholar 

  3. Serpone N, Emeline AV, Horikoshi S, Kuznetsov VN, Ryabchuk VK (2012) Photochem Photobiol Sci 11:1121

    Google Scholar 

  4. Ohtani B (2014) Phys Chem Chem Phys 16:1788

    Google Scholar 

  5. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Adv Mater 24:229

    Google Scholar 

  6. Fujishima A, Honda K (1972) Nature 238:37

    Google Scholar 

  7. Li J, Wu N (2015) Cat Sci Technol 5:1360

    Google Scholar 

  8. Vinu R, Madras G (2010) J Indian Inst Sci 90:189

    Google Scholar 

  9. Jiang X, Manawan M, Feng T, Qian R, Zhao T, Zhou G, Kong F, Wang Q, Dai S, Pan JH (2018) Catal Today 300:12

    Google Scholar 

  10. Ryu J, Choi W (2008) Environ Sci Technol 42:294

    Google Scholar 

  11. Vinu R, Akki SU, Madras G (2010) J Hazard Mater 176:765

    Google Scholar 

  12. Liu G, Wang L, Yang HG, Cheng H-M, Lu GQ (2010) J Mater Chem 20:831

    Google Scholar 

  13. (a) Charanpahari A, Umare SS, Gokhale SP, Sudarsan V, Sreedhar B, Sasikala R (2012) Appl Catal A G 443–444: 96 (b) Charanpahari A, Umare SS, Sasikala R (2013) Appl Surf Sci, 282, 408 (c) Umare SS, Charanpahari A, Sasikala R (2013) Mater Chem Phys 140: 529

    Google Scholar 

  14. Zhang Z, Yates JT (2012) Chem Rev 112:5520

    Google Scholar 

  15. Daghrir R, Drogui P, Robert D (2013) Ind Eng Chem Res 52:3581

    Google Scholar 

  16. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Adv Mater 29:1601694

    Google Scholar 

  17. Liu X, Zhu G, Wang X, Yuan X, Lin T, Huang F (2016) Adv Energy Mater 6:1600452

    Google Scholar 

  18. Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) Adv Funct Mater 23:5444

    Google Scholar 

  19. Chen X, Liu L, Huang F (2015) Chem Soc Rev 44:1861

    Google Scholar 

  20. (a) Joshi RK, Schneider JJ (2012) Chem Soc Rev 41: 5285 (b) Gu D, Schüth F (2014) Chem Soc Rev 43: 313 (c) Hu J, Chen M, Fang X, Wu L (2011) Chem Soc Rev 40: 5472

    Google Scholar 

  21. Qi J, Lai X, Wang J, Tang H, Ren H, Yu Y, Quan J, Zhang L, Yu R, Ma G, Zhiguo S, Zhao H, Wang D (2015) Chem Soc Rev 44:6749 

    Google Scholar 

  22. Li X, Yu L, Jaroniec M (2016) Chem Soc Rev 45:2603

    Google Scholar 

  23. Bai S, Wang L, Li Z, Xiong Y (2017) Adv Sci 4:1600216

    Google Scholar 

  24. Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng H-M (2014) Chem Rev 114:9559

    Google Scholar 

  25. Augugliaro V, Camera-Roda G, Loddo V, Palmisano G, Palmisano L, Soria J, Yurdakal S (2015) J Phys Chem Lett 6:1968

    Google Scholar 

  26. Charanpahari A, Umare SS, Sasikala R (2013) Catal Commun 40:9

    Google Scholar 

  27. Charanpahari A, Ghugal SG, Umare SS, Sasikala R (2015) New J Chem

    Google Scholar 

  28. Gupta N, Pal B (2014) Chem Eng J 246:260

    Google Scholar 

  29. Ghugal SG, Umare SS, Sasikala R (2015) RSC Adv 5:63393

    Google Scholar 

  30. Ghugal SG, Umare SS, Sasikala R (2015) Appl Catal A Gen 496:25

    Google Scholar 

  31. Ghugal SG, Umare SS, Sasikala R (2016) RSC Adv 6:64047

    Google Scholar 

  32. Bessekhouad Y, Chaoui N, Trzpit M, Ghazzal N, Robert D, Weber JV (2006) J Photochem Photobiol A Chem 183:218

    Google Scholar 

  33. Zhang H, Chen G, Bahnemann DW (2009) J Mater Chem 19:5089

    Google Scholar 

  34. Bessekhouad Y, Robert D, Weber JV (2004) J Photochem Photobiol A Chem 163:569

    Google Scholar 

  35. Soltani N, Saion E, Yunus WMM, Erfani M, Navasery M, Bahmanrokh G, Rezaee K (2014) Appl Surf Sci 290:440

    Google Scholar 

  36. Bai W, Cai L, Wu C, Xiao X, Fan X, Chen K, Lin J (2014) Mater Lett 124:177

    Google Scholar 

  37. Coehoorn R, Haas C, de Groot RA (1987) Phys Rev B 35:6203

    Google Scholar 

  38. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Chem Soc Rev 43:5234

    Google Scholar 

  39. (a) Zhang Z, Zheng T, Li X, Xu J, Zeng H (2016) Part Part Syst Charact 33:457 (b)  Lim S Y, Shen W, Gao Z, (2015) Carbon quantum dots and their applications. Chemical Society Reviews 44(1):362–381

    Google Scholar 

  40. Hu A, Wang Y (2014) J Mater Chem C 2:6921–6939

    Google Scholar 

  41. Hardman R (2006) Environ Health Perspect 114:165

    Google Scholar 

  42. (a) Wang J, Qiu J (2016) J Mater Sci 51: 4728 (b) Tang Q, Zhu W, He B, Yang P (2017) ACS Nano 11: 1540 (c) Alam A-M, Park B-Y, Ghouri ZK, Park M, Kim H-Y (2015) Green Chem 17: 3791

    Google Scholar 

  43. Ma Z, Ming H, Huang H, Liu Y, Kang Z (2012) New J Chem 36:861

    Google Scholar 

  44. Zhao S, Lan M, Zhu X, Xue H, Ng T-W, Meng X, Lee C-S, Wang P, Zhang W (2015) ACS Appl Mater Interfaces 7:17054

    Google Scholar 

  45. Zhong D, Miao H, Yang K, Yang X (2016) Mater Lett 166:89

    Google Scholar 

  46. Sun C, Zhang Y, Wang P, Yang Y, Wang Y, Xu J, Wang Y, Yu WW (2016) Nanoscale Res Lett 11:110

    Google Scholar 

  47. Wang L, Li W, Wu B, Li Z, Wang S, Liu Y, Pan D, Wu M (2016) Chem Eng J 300:75

    Google Scholar 

  48. (a) Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping JD, Fu X, Antonietti M, Wang X (2010) Angew Chem Int Ed 49:441 (b) Xinchen Wang, Kazuhiko Maeda, Arne Thomas, Kazuhiro Takanabe, Gang Xin, Johan M. Carlsson, Kazunari Domen, Markus Antonietti, (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials 8(1):76–80

    Google Scholar 

  49. (a) Zhu J, Xiao P, Li H, Carabineiro SAC (2014) ACS Appl Mater Interfaces 6: 16449−16465 (b) Cao S, Yu J (2014) J Phys Chem Lett 5: 2101

    Google Scholar 

  50. Zhou L, Zhang H, Sun H, Liu S, Tade MO, Wang S, Jin W (2016) Cat Sci Technol 6:7002

    Google Scholar 

  51. (a) Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Chem Rev 116: 7159 (b) Jie Fu YT, Chang B, Xi F, Dong X (2012) J Mater Chem 22: 21159 (c) Shouwei Zhang JL, Zeng M, Zhao G, Xu J, Hu W, Wang aX (2013) ACS Appl Mater Interfaces 5: 12735−12743 (d) Haiping Li JL, Hou W, Du N, Zhang R, Tao X (2014) Appl Catal B Environ 160–161: 89

    Google Scholar 

  52. Mohamed HH, Bahnemann DW (2012) Appl Catal B Environ 128:91

    Google Scholar 

  53. Liu X, Chen N, Li Y, Deng D, Xing X, Wang Y (2016) Sci Rep 6:39531

    Google Scholar 

  54. Tahir M, Cao C, Butt FK, Idrees F, Mahmood N, Ali Z, Aslam I, Tanveer M, Rizwan M, Mahmood T (2013) J Mater Chem A 1:13949

    Google Scholar 

  55. Hollmann D, Karnahl M, Tschierlei S, Kailasam K, Schneider M, Radnik J, Grabow K, Bentrup U, Junge H, Beller M, Lochbrunner S, Thomas A, Brückner A (2014) Chem Mater 26:1727

    Google Scholar 

  56. Gong X, Liu G, Li Y, Yu DYW, Teoh WY (2016) Chem Mater 28:8082

    Google Scholar 

  57. Huang X, Qi X, Boey F, Zhang H (2012) Chem Soc Rev 41:666

    Google Scholar 

  58. Radich JG, Krenselewski AL, Zhu J, Kamat PV (2014) Chem Mater 26:4662

    Google Scholar 

  59. Liu J, Zhang G (2014) Phys Chem Chem Phys 16:8178

    Google Scholar 

  60. (a) Unuabonah EI, Ugwuja CG, Omorogie MO, Adewuyi A, Oladoja NA (2018) Appl Clay Sci 151: 211 (b) Ménesi J, Körösi L, Bazsó É, Zöllmer V, Richardt A, Dékány I (2008) Chemosphere 70: 538

    Google Scholar 

  61. Liu J, Dong M, Zuo S, Yu Y (2009) Appl Clay Sci 43:156

    Google Scholar 

  62. Gu N, Gao J, Li H, Wu Y, Ma Y, Wang K (2016) Appl Clay Sci 132–133:79

    Google Scholar 

  63. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Sci Total Environ 424:1

    Google Scholar 

  64. Kharisov BI, Rasika Dias HV, Kharissova OV, Manuel Jiménez-Pérez V, Olvera Pérez B, Muñoz Flores B (2012) RSC Adv 2:9325

    Google Scholar 

  65. Mou F, Xu LM, Guan H, Chen J, Wang D-r, Shuanhu (2012) Nanoscale 4:4650

    Google Scholar 

  66. Yao H, Fan M, Wang Y, Luo G, Fei W (2015) J Mater Chem A 3:17511–17524

    Google Scholar 

  67. Hankare PP, Patil RP, Jadhav AV, Garadkar KM, Sasikala R (2011) Appl Catal B Environ 107:333

    Google Scholar 

  68. Kumar S, Surendar T, Kumar B, Baruah A, Shanker V (2013) J Phys Chem C 117:26135

    Google Scholar 

  69. Fu Y, Chen H, Sun X, Wang X (2012) Appl Catal B Environ 111–112:280

    Google Scholar 

  70. Bhattacharyya K, Majeed JP, Dey KK, Ayyub P, Tyagi AK, Bharadwaj SR (2014) J Phys Chem C 118:15946–15962

    Google Scholar 

  71. Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011) Appl Catal B Environ 102:563

    Google Scholar 

  72. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Desalination 261:3

    Google Scholar 

  73. Ba-Abbad MM, Takriff MS, Kadhum AAH, Mohamad AB, Benamor A, Mohammad AW (2016) Environ Sci Pollut Res 24:2804

    Google Scholar 

  74. Sinha RP, Hader D-P (2002) Photochem Photobiol Sci 1:225

    Google Scholar 

  75. Lindahl T (1993) Nature 362:709

    Google Scholar 

  76. Castillo-Ledezma JH, Sánchez Salas JL, López-Malo A, Bandala ER (2011) Eur Food Res Technol 233:825

    Google Scholar 

  77. Bandala ER, Raichle BW (2013) Solar energy sciences and engineering applications. CRC Press, Leiden, p 978. Print ISBN

    Google Scholar 

  78. Gourmelon M, Cillard J, Pommepuy M (1994) J Appl Bacteriol 77:105

    Google Scholar 

  79. Reed RH, Mani SK, Meyer V (2000) Lett Appl Microbiol 30:432

    Google Scholar 

  80. Hurum D, Agrios A, Crist S, Gray K, Rajh T, Thurnauer M (2006) J Electron Spectrosc Relat Phenom 150:155

    Google Scholar 

  81. Benabbou A, Derriche Z, Felix C, Lejeune P, Guillard C (2007) Appl Catal B Environ 76:257

    Google Scholar 

  82. Blake DM, Maness P-C, Huang Z, Wolfrum EJ, Huang J, Jacoby WA (1999) Sep Purif Methods 28:1

    Google Scholar 

  83. Rincón A-G, Pulgarin C (2004) Appl Catal B Environ 49:99

    Google Scholar 

  84. Rincon A-G, Pulgarin C (2004) Appl Catal B Environ 51:283

    Google Scholar 

  85. Kulczycki E, Ferris F, Fortin D (2002) Geomicrobiol J 19:553

    Google Scholar 

  86. Rincón AG, Pulgarin C, Adler N, Peringer P (2001) J Photochem Photobiol A Chem 139:233

    Google Scholar 

  87. Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Appl Environ Microbiol 65:4094

    Google Scholar 

  88. Saito T, Iwase T, Horie J, Morioka T (1992) J Photochem Photobiol B Biol 14:369

    Google Scholar 

  89. Huang Z, Maness P-C, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA (2000) J Photochem Photobiol A Chem 130:163

    Google Scholar 

  90. Markowska-Szczupak A, Ulfig K, Morawski A (2011) Catal Today 169:249

    Google Scholar 

  91. Kapuscinski RB, Mitchell R (1981) Appl Environ Microbiol 41:670

    Google Scholar 

  92. Imlay JA (2003) Ann Rev Microbiol 57:395

    Google Scholar 

  93. Kruszewski M (2003) Mutat Res/Fundam Mol Mech Mutagen 531:81

    Google Scholar 

  94. Vohra A, Goswami D, Deshpande D, Block S (2005) J Ind Microbiol Biotechnol 32:364

    Google Scholar 

  95. Hoop M, Shen Y, Chen XZ, Mushtaq F, Iuliano LM, Sakar MS, Petruska A, Loessner MJ, Nelson BJ, Pané S (2016) Adv Funct Mater 26:1063

    Google Scholar 

  96. Cheng Z, Li Y (2007) Chem Rev 107:748

    Google Scholar 

  97. Valduga G, Bertoloni G, Reddi E, Jori G (1993) J Photochem Photobiol B Biol 21:81

    Google Scholar 

  98. Hayden SC, Allam NK, El-Sayed MA (2010) J Am Chem Soc 132:14406

    Google Scholar 

  99. Hu C, Guo J, Qu J, Hu X (2007) Langmuir 23:4982

    Google Scholar 

  100. Hu C, Lan Y, Qu J, Hu X, Wang A (2006) J Phys Chem B 110:4066

    Google Scholar 

  101. Seven O, Dindar B, Aydemir S, Metin D, Ozinel M, Icli S (2004) J Photochem Photobiol A Chem 165:103

    Google Scholar 

  102. Zhang J, Zhu H, Zheng S, Pan F, Wang T (2009) ACS Appl Mater Inter 1:2111

    Google Scholar 

  103. Tan OK, Hu Y (2014) Google patents

    Google Scholar 

  104. Qiao S, Sun D, Tay J, Easton C (2003) Water Sci Technol 47:211

    Google Scholar 

  105. Pathania D, Katwal R, Sharma G (2016) Mater Sci Forum 842:88

    Google Scholar 

  106. Pham T-D, Lee B-K (2014) Appl Surf Sci 296:15

    Google Scholar 

  107. Yousef A, Barakat NA, Amna T, Al-Deyab SS, Hassan MS, Abdel-hay A, Kim HY (2012) Ceram Int 38:4525

    Google Scholar 

  108. Vinu R, Madras G (2012) J Indian Inst Sci 90:189

    Google Scholar 

  109. Shi H, Li G, Sun H, An T, Zhao H, Wong P-K (2014) Appl Catal B Environ 158:301

    Google Scholar 

  110. Kang S, Mauter MS, Elimelech M (2009) Environ Sci Technol 43:2648

    Google Scholar 

  111. Akhavan O, Ghaderi E (2010) ACS Nano 4:5731

    Google Scholar 

  112. Wang W, Yu JC, Xia D, Wong PK, Li Y (2013) Environ Sci Technol 47:8724

    Google Scholar 

  113. (a) Eswar NK, Ramamurthy PC, Madras G (2016) New J Chem 40:3464 (b) Lingmei Liu, Weiyi Yang, Qi Li, Shian Gao, Jian Ku Shang, (2014) Synthesis of Cu O Nanospheres Decorated with TiO Nanoislands, Their Enhanced Photoactivity and Stability under Visible Light Illumination, and Their Post-illumination Catalytic Memory . ACS Applied Materials & Interfaces 6 (8):5629-5639

    Google Scholar 

  114. Ng AMC, Guo MY, Leung YH, Chan CMN, Wong SWY, Yung MMN, Ma APY, Djurišić AB, Leung FCC, Leung KMY, Chan WK, Lee HK (2015) J Photochem Photobiol B Biol 151:17

    Google Scholar 

  115. Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Aquat Toxicol 170:162

    Google Scholar 

  116. Santo N, Fascio U, Torres F, Guazzoni N, Tremolada P, Bettinetti R, Mantecca P, Bacchetta R (2014) Water Res 53:339

    Google Scholar 

  117. Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W (2016) J Hazard Mater 308:328

    Google Scholar 

  118. Sajjad S, Leghari SAK, Iqbal A (2017) ACS Appl Mater Interfaces 9(50):43393–43414

    Google Scholar 

  119. Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) ACS Appl Mater Interfaces 3:2607

    Google Scholar 

  120. Havrdova M, Hola K, Skopalik J, Tomankova K, Petr M, Cepe K, Polakova K, Tucek J, Bourlinos AB, Zboril R (2016) Carbon 99:238

    Google Scholar 

  121. Guo Y, Yao P, Zhu D, Gu G (2015) J Mater Chem A 13189

    Google Scholar 

  122. Alam R, Lightcap IV, Karwacki CJ, Kamat PV (2014) ACS Nano 8:7272

    Google Scholar 

  123. Wang J, Tang L, Zeng G, Deng Y, Dong H, Liu Y, Wang L, Peng B, Zhang C, Chen F (2018) Appl Catal B Environ 222:115

    Google Scholar 

  124. Lingmei Liu, Weiyi Yang, Qi Li, Shian Gao, Jian Ku Shang, (2014) Synthesis of Cu O Nanospheres Decorated with TiO Nanoislands, Their Enhanced Photoactivity and Stability under Visible Light Illumination, and Their Post-illumination Catalytic Memory. ACS Applied Materials & Interfaces 6(8):5629–5639

    Google Scholar 

  125. María Pedro-Monzonís, Abel Solera, Javier Ferrer, Teodoro Estrela, Javier Paredes-Arquiola, (2015) A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology 527:482–493

    Google Scholar 

  126. Shi Ying Lim, Wei Shen, Zhiqiang Gao, (2015) Carbon quantum dots and their applications. Chemical Society Reviews 44(1):362–381

    Google Scholar 

  127. Xinchen Wang, Kazuhiko Maeda, Arne Thomas, Kazuhiro Takanabe, Gang Xin, Johan M. Carlsson, Kazunari Domen, Markus Antonietti, (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials 8(1):76–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Charanpahari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Charanpahari, A., Gupta, N., Devthade, V., Ghugal, S., Bhatt, J. (2019). Ecofriendly Nanomaterials for Sustainable Photocatalytic Decontamination of Organics and Bacteria. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_179

Download citation

Publish with us

Policies and ethics