Skip to main content

Porosity in Biomaterials: A Key Factor in the Development of Applied Materials in Biomedicine

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Very often, porosity is the main factor taken into account during the design and synthesis of a material. Many applications can be directly correlated to the porosity of a given material, in uses such as catalysts, absorbents, drug carriers, combustible production, waste management, micro-electronics, medical diagnosis, among others. Three main characteristics describe the catalytic properties of a pore: it allows specific interactions, can be chemically and physically built from scratch to guarantee the best interaction with the target molecule, and its presence exponentially increases the available surface area. In the current chapter, we will focus on porosity in soft materials designed for biomedical applications, specifically hydrogels, giving an overview of their physicochemical behavior and the role of porosity in biomaterial development and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith L (2017) Chapter twelve – Historical perspectives on water purification A2. In: Ahuja S (ed) Chemistry and water. Elsevier, Amsterdam, pp 421–468

    Google Scholar 

  2. Liu PS, Chen GF (2014) Chapter eight – Applications of polymer foams. In: Porous materials. Butterworth-Heinemann, Boston, pp 383–410

    Google Scholar 

  3. Zdravkov BD et al (2007) Pore classification in the characterization of porous materials: a perspective. Cent Eur J Chem 5(2):385–395

    Google Scholar 

  4. Kodikara J, Barbour S, Fredlund D (1999) Changes in clay structure and behaviour due to wetting and drying. In: Proceedings 8th Australia New Zealand conference on geomechanics: consolidating knowledge. Australian Geomechanics Society. Barton, ACT

    Google Scholar 

  5. Kaneko K (1994) Determination of pore size and pore size distribution. J Membr Sci 96(1): 59–89

    Google Scholar 

  6. Rouquerol J et al (1994) Recommendations for the characterization of porous solids (Technical report). Pure Appl Chem 66(8):1739–1758

    Google Scholar 

  7. Loucks RG et al (2012) Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull 96(6):1071–1098

    Google Scholar 

  8. Champoux Y, Allard JF (1991) Dynamic tortuosity and bulk modulus in air-saturated porous media. J Appl Phys 70(4):1975–1979

    Google Scholar 

  9. Van Keulen J (1973) Density of porous solids. Mater Constr 6(3):181–183

    Google Scholar 

  10. Sarkisov L (2012) Accessible surface area of porous materials: understanding theoretical limits. Adv Mater 24(23):3130–3133

    Google Scholar 

  11. He T et al (2014) Bio-template mediated in situ phosphate transfer to hierarchically porous TiO2 with localized phosphate distribution and enhanced photoactivities. J Phys Chem C 118(9):4607–4617

    Google Scholar 

  12. Rodriguez-Albelo LM et al (2017) Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series. Nat Commun 8:1–10

    Google Scholar 

  13. Alaaeddin A et al (2015) Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529:190–194

    Google Scholar 

  14. Wang CF, Chen LT (2017) Preparation of superwetting porous materials for ultrafast separation of water-in-oil emulsions. Langmuir 33(8):1969–1973

    Google Scholar 

  15. Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chem Ing Tech 82(7):1059–1073

    Google Scholar 

  16. Vanson J-M et al (2015) Unexpected coupling between flow and adsorption in porous media. Soft Matter 11(30):6125–6133

    Google Scholar 

  17. Lu M et al (2016) Chemisorption mechanism of DNA on mg/Fe layered double hydroxide nanoparticles: insights into engineering effective SiRNA delivery systems. Langmuir 32(11): 2659–2667

    Google Scholar 

  18. McCusker LB, Liebau F, Engelhardt G (2003) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts:(IUPAC recommendations 2001): (IUPAC recommendations 2001). Microporous Mesoporous Mater 58(1):3–13

    Google Scholar 

  19. Weisz PB (1995) Molecular-diffusion in microporous materials-formalisms and mechanisms. Ind Eng Chem Res 34(8):2692–2699

    Google Scholar 

  20. Vattipalli V et al (2016) Long walks in hierarchical porous materials due to combined surface and configurational diffusion. Chem Mater 28(21):7852–7863

    Google Scholar 

  21. Reinecke SA, Sleep BE (2002) Knudsen diffusion, gas permeability, and water content in an unconsolidated porous medium. Water Resour Res 38(12):1280–1296

    Google Scholar 

  22. Vincent O, Marguet B, Stroock AD (2017) Imbibition triggered by capillary condensation in Nanopores. Langmuir 33(7):1655–1661

    Google Scholar 

  23. Espanol M et al (2016) Impact of porosity and electrolyte composition on the surface charge of hydroxyapatite biomaterials. ACS Appl Mater Interfaces 8(1):908–917

    Google Scholar 

  24. Hao GP et al (2016) Design of Hierarchically Porous Carbons with interlinked hydrophilic and hydrophobic surface and their capacitive behavior. Chem Mater 28(23):8715–8725

    Google Scholar 

  25. Li J et al (2013) Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications. ACS Appl Mater Interfaces 5(14):6704–6711

    Google Scholar 

  26. Odian GG, Odian GG (2004) Principles of polymerization. Wiley, Hoboken

    Google Scholar 

  27. Robert O. Ebewele. Thermal transitions in polymers (2000) In: Polymer science and technology. CRC Press, Boca Raton

    Google Scholar 

  28. Kurihara S (2004) Fast responsive liquid crystalline polymer systems. In: Reflexive polymers and hydrogels. CRC Press, Boca Raton

    Google Scholar 

  29. Koetting MC et al (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Proc Mater Sci 93:1–49

    Google Scholar 

  30. Lee KY, Yuk SH (2007) Polymeric protein delivery systems. Prog Polym Sci 32(7):669–697

    Google Scholar 

  31. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670

    Google Scholar 

  32. Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AICHE J 49(12):2990–3006

    Google Scholar 

  33. Kim B, La Flamme K, Peppas NA (2003) Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci 89(6):1606–1613

    Google Scholar 

  34. van Der Sman RGM (2015) Biopolymer gel swelling analysed with scaling laws and Flory-Rehner theory. Food Hydrocoll 48:94–101

    Google Scholar 

  35. Bajpai AK et al (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33(11):1088–1118

    Google Scholar 

  36. Vrentas JS, Vrentas CM (2003) Steady viscoelastic diffusion. J Appl Polym Sci 88(14): 3256–3263

    Google Scholar 

  37. Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31(23):8382–8395

    Google Scholar 

  38. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iranian Polym J 19(5):375–398

    Google Scholar 

  39. Cukier RI (1984) Diffusion of brownian spheres in semidilute polymer-solutions. Macromolecules 17(2):252–255

    Google Scholar 

  40. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Google Scholar 

  41. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11(1):1–35

    Google Scholar 

  42. Fernandez-Nieves A et al (2000) Charge controlled swelling of microgel particles. Macromolecules 33(6):2114–2118

    Google Scholar 

  43. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Google Scholar 

  44. Brannon-Peppas L, Peppas NA (1991) Equilibrium swelling behavior of pH-sensitive hydrogels. Chem Eng Sci 46(3):715–722

    Google Scholar 

  45. Li H et al (2005) Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels. Biomacromolecules 6(1):109–120

    Google Scholar 

  46. Ricka J, Tanaka T (1984) Swelling of ionic gels-quantitative performance of the Donnan theory. Macromolecules 17(12):2916–2921

    Google Scholar 

  47. Kurnia JC, Birgersson E, Mujumdar AS (2011) Analysis of a model for pH-sensitive hydrogels. Polymer 53(2):613–622

    Google Scholar 

  48. Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6–21

    Google Scholar 

  49. Oyen ML (2014) Mechanical characterisation of hydrogel materials. Int Mater Rev 59(1): 44–59

    MathSciNet  Google Scholar 

  50. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657

    Google Scholar 

  51. Rajinder Pal, Dynamic viscoelastic behavior of composites (2006) In: Rheology of particulate dispersions and composites. CRC Press, Boca Raton, pp 355–372

    Google Scholar 

  52. Deligkaris K et al (2010) Hydrogel-based devices for biomedical applications. Sens Actuators B 147(2):765–774

    Google Scholar 

  53. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60(15):1638–1649

    Google Scholar 

  54. Ullah F et al (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C Mater 57:414–433

    Google Scholar 

  55. Zhai M et al (2002) Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr Polym 50(3):295–303

    Google Scholar 

  56. Pescosolido L et al (2011) In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Acta Biomater 7(4):1627–1633

    Google Scholar 

  57. Bajpai AK, Bajpai J, Shukla S (2002) Water sorption through a semi-interpenetrating polymer network (IPN) with hydrophilic and hydrophobic chains. React Funct Polym 50(1):9–21

    Google Scholar 

  58. Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53(9):1805–1822

    Google Scholar 

  59. Zhou C, Wu Q (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloid Surf B 84(1):155–162

    Google Scholar 

  60. Zain NAM, Suhaimi MS, Idris A (2011) Development and modification of PVA– alginate as a suitable immobilization matrix. Process Biochem 46(11):2122–2129

    Google Scholar 

  61. Martínez-Gómez F et al (2017) In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels. Carbohydr Polym 155:182–191

    Google Scholar 

  62. Martínez-Gómez F et al (2015) Preparation and swelling properties of homopolymeric alginic acid fractions/poly(N-isopropyl acrylamide) graft copolymers. J Appl Polym Sci 132(32): 42398–42408

    Google Scholar 

  63. Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92(2):1348–1356

    Google Scholar 

  64. Yadav M, Rhee KY, Park SJ (2014) Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. Carbohydr Polym 110:18–25

    Google Scholar 

  65. Li H et al (2017) Surface enhanced Raman scattering properties of dynamically tunable Nanogaps between au nanoparticles self-assembled on hydrogel microspheres controlled by pH. J Colloid Interface Sci 505:467–475

    Google Scholar 

  66. Dong X et al (2016) Self-assembly of monodisperse composite microgels with bimetallic nanorods as core and PNIPAM as shell into close-packed monolayers and SERS efficiency. Mater Des 104:303–311

    Google Scholar 

  67. Dumitriu RP, Mitchell GR, Vasile C (2011) Multi-responsive hydrogels based on N-isopropylacrylamide and sodium alginate. Polym Int 60(2):222–233

    Google Scholar 

  68. Agrahari V et al (2017) Real-time analysis of tenofovir release kinetics using quantitative phosphorus (31P) nuclear magnetic resonance spectroscopy. J Pharm Sci 106:3005. In Press

    Google Scholar 

  69. Sallouh M et al (2015) 1H HR-MAS NMR spectroscopy as a simple tool to characterize peptide – functionalized hydrogels as a function of cross linker density. Polymer 56:141–146

    Google Scholar 

  70. Medronho B et al (2017) From a new cellulose solvent to the cyclodextrin induced formation of hydrogels. Colloid Surf A 532:548. In Press

    Google Scholar 

  71. Grant SC et al (2005) Alginate assessment by NMR microscopy. J Mater Sci Mater Med 16(6):511–514

    Google Scholar 

  72. Hills BP et al (2000) NMR studies of calcium induced alginate gelation. Part II. The internal bead structure. Magn Reson Chem 38(9):719–728

    Google Scholar 

  73. Chu KC, Rutt BK (1997) Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity. Magn Reson Med 37(2):314–319

    Google Scholar 

  74. de Celis Alonso B et al (2010) NMR relaxometry and rheology of ionic and acid alginate gels. Carbohydr Polym 82(3):663–669

    Google Scholar 

  75. Colsenet R, Mariette F, Cambert M (2005) NMR relaxation and water self-diffusion studies in whey protein solutions and gels. J Agric Food Chem 53(17):6784–6790

    Google Scholar 

  76. Taglienti A, Sequi P, Valentini M (2009) Kinetics of drug release from a hyaluronan-steroid conjugate investigated by NMR spectroscopy. Carbohydr Res 344(2):245–249

    Google Scholar 

  77. Zhang C et al (2016) Hierarchical porous structures in cellulose: NMR relaxometry approach. Polymer 98:237–243

    Google Scholar 

  78. Iijima M et al (2007) AFM studies on gelation mechanism of xanthan gum hydrogels. Carbohydr Polym 68(4):701–707

    Google Scholar 

  79. Pramanick AK et al (2011) Topographical heterogeneity in transparent PVA hydrogels studied by AFM. Mater Sci Eng C 32(2):222–227

    Google Scholar 

  80. Vulpe R et al (2016) Crosslinked hydrogels based on biological macromolecules with potential use in skin tissue engineering. Int J Biol Macromol 84:174–181

    Google Scholar 

  81. Kulkarni RV et al (2010) Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin. Int J Biol Macromol 47(4):520–527

    Google Scholar 

  82. Zhang Y-T et al (2017) Co-delivery of evodiamine and rutaecarpine in a microemulsion-based hyaluronic acid hydrogel for enhanced analgesic effects on mouse pain models. Int J Pharm 528(1–2):100–106

    Google Scholar 

  83. Rasoulzadeh M, Namazi H (2017) Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohyd Polym 168: 320–326

    Google Scholar 

  84. Zhang XZ et al (2001) Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir 17(20):6094–6099

    Google Scholar 

  85. Zhang J-T, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5(1):488–497

    Google Scholar 

  86. Dumitriu RP, Mitchell GR, Vasile C (2011) Rheological and thermal behaviour of poly(N-isopropylacrylamide)/alginate smart polymeric networks. Polym Int 60(9):1398–1407

    Google Scholar 

  87. Işıklan N, Küçükbalcı G (2012) Microwave-induced synthesis of alginate-graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads. Eur J Pharm Biopharm 82(2):316–331

    Google Scholar 

  88. Cheaburu CN et al (2013) Thermoresponsive sodium alginate-g-poly(N-isopropylacrylamide) copolymers III. Solution properties. J Appl Polym Sci 127(5):3340–3348

    Google Scholar 

  89. Editorial Nature Materials (2009) Boom time for biomaterials. Nat Mater 8(6):439–439

    Google Scholar 

  90. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Google Scholar 

  91. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118

    Google Scholar 

  92. Liu W et al (2008) Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 29(9):1147–1158

    Google Scholar 

  93. Alarcon EI et al (2016) Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale 8(12): 6484–6489

    Google Scholar 

  94. Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22(8):769–785

    Google Scholar 

  95. am Ende MT, Mikos AG (1997) Diffusion-controlled delivery of proteins from hydrogels and other hydrophilic systems. Pharm Biotechnol 10:139–165

    Google Scholar 

  96. Lim HL et al (2014) Smart hydrogels as functional biomimetic systems. Biomater Sci 2(5): 603–618

    Google Scholar 

  97. Schwalfenberg GK (2012) The alkaline diet: is there evidence that an alkaline pH diet benefits health? J Environ Public Health 2012:1–7

    Google Scholar 

  98. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    Google Scholar 

  99. Qi H et al (2017) Dual responsive zein hydrogel membrane with selective protein adsorption and sustained release property. Mater Sci Eng C Mater 70:347–356

    Google Scholar 

  100. Ma G et al (2017) Development of ionic strength/pH/enzyme triple-responsive zwitterionic hydrogel of the mixed l – glutamic acid and l – lysine polypeptide for site-specific drug delivery. J Mater Chem B 5(5):935–943

    Google Scholar 

  101. Gutowska AB, Han Y, Feijen J, Kim SW (1992) Heparin release from thermosensitive hydrogels. J Control Release 22:95–104

    Google Scholar 

  102. Jeong B et al (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388(6645):860–862

    Google Scholar 

  103. Dong L, Jiang H (2007) Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3(10):1223–1230

    Google Scholar 

  104. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389(6653):829–832

    Google Scholar 

  105. Brown LR et al (1996) Characterization of glucose-mediated insulin release from implantable polymers. J Pharm Sci 85(12):1341–1345

    Google Scholar 

  106. Heller J et al (1978) Controlled drug release by polymer dissolution. I. Partial esters of maleic anhydride copolymers – properties and theory. J Appl Polym Sci 22(7):1991–2009

    Google Scholar 

  107. D’Emanuele A, Staniforth JN (1991) An electrically modulated drug delivery device: I. Pharm Res 8(7):913–918

    Google Scholar 

  108. Baroli B (2007) Hydrogels for tissue engineering and delivery of tissue-inducing substances. J Pharm Sci 96(9):2197–2223

    Google Scholar 

  109. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14(2):149–165

    Google Scholar 

  110. Peretti GM et al (2006) Tissue engineered cartilage integration to live and devitalized cartilage: a study by reflectance mode confocal microscopy and standard histology. Connect Tissue Res 47(4):190–199

    Google Scholar 

  111. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982): 487–492

    Google Scholar 

  112. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414

    Google Scholar 

  113. El-Sherbiny IM, Yacoub MH (2013) Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 2013(3):316–342

    Google Scholar 

  114. Chen A, Davis BH (1999) UV irradiation activates JNK and increases alphaI(I) collagen gene expression in rat hepatic stellate cells. J Biol Chem 274(1):158–164

    Google Scholar 

  115. Yang S et al (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ahumada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahumada, M., Jacques, E., Calderon, C., Martínez-Gómez, F. (2019). Porosity in Biomaterials: A Key Factor in the Development of Applied Materials in Biomedicine. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_162

Download citation

Publish with us

Policies and ethics