Skip to main content

Biomolecule Silver Nanoparticle-Based Materials for Biomedical Applications

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

The biomedical properties of nanoparticulated silver have been widely studied in the last decade; however, still there are concerns regarding its long-term toxicity. Recent developments in nanoparticle fabrication and surface manipulation, using different biomolecules, have allowed the preparation of nontoxic nanosilver. Thus, nanosilver has been safely incorporated in a variety of regenerative templates for engineering of a number of tissues like the cornea, skin, and heart. In this chapter, some selected friendly synthetic routes for the preparation of biomolecule-capped silver nanoparticles will be discussed and presented. The main goal is to present a rationale for selecting a synthetic route for nanosilver that minimizes/avoids toxic side effects for biomaterial development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Uncategorized References

  1. Alexander JW (2009) History of the medical use of silver. Surg Infect 10(3):289–292

    Article  Google Scholar 

  2. Muffly TM, Tizzano AP, Walters MD (2011) The history and evolution of sutures in pelvic surgery. J Roy Soc Med 104(3):107–112

    Article  Google Scholar 

  3. Schneider G (1984) Silver nitrate prophylaxis. Can Med Assoc J 131(3):193–196

    Google Scholar 

  4. Panchbhai A (2015) Wilhelm Conrad Röntgen and the discovery of X-rays: revisited after centennial. J Indian Acad Oral Med Radiol 27(1):90–95

    Article  Google Scholar 

  5. Prescott RJ, Wells S (1994) Systemic argyria. J Clin Pathol 47(6):556–557

    Article  Google Scholar 

  6. Folgori L et al (2014) Epidemiology and clinical outcomes of multidrug-resistant, gram-negative bloodstream infections in a European tertiary pediatric hospital during a 12-month period. Pediatr Infect Dis J 33(9):929–932

    Article  Google Scholar 

  7. Hirsch EB, Tam VH (2010) Impact of multidrug-resistant Pseudomonas Aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 10(4):441–451

    Article  Google Scholar 

  8. Linares L et al (2007) Epidemiology and outcomes of multiple antibiotic-resistant bacterial infection in renal transplantation. Transplant Proc 39(7):2222–2224

    Article  Google Scholar 

  9. Nseir S et al (2006) Multiple-drug-resistant bacteria in patients with severe acute exacerbation of chronic obstructive pulmonary disease: prevalence, risk factors, and outcome. Crit Care Med 34(12):2959–2966

    Article  Google Scholar 

  10. McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of Nanosilver. J Food Drug Anal 22(1):116–127

    Article  Google Scholar 

  11. McLaughlin S et al (2016) Sprayable peptide-modified silver nanoparticles as a barrier against bacterial colonization. Nanoscale 8(46):19200–19203

    Article  Google Scholar 

  12. Allison S et al (2017) Electroconductive nanoengineered biomimetic hybrid fibers for cardiac tissue engineering. J Mater Chem B 5(13):2402–2406

    Article  Google Scholar 

  13. Stamplecoskie K (2015) Silver nanoparticles: from bulk material to colloidal nanoparticles. In: Alarcon EI, Griffith M, Udekwu KI (eds) Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices. Springer International Publishing, Cham, pp 1–12

    Google Scholar 

  14. Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3):339–354

    Article  Google Scholar 

  15. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  Google Scholar 

  16. Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol 3(1):95–101

    Article  Google Scholar 

  17. Griffith M et al (2015) Anti-microbiological and anti-infective activities of silver. In: Alarcon EI, Griffith M, Udekwu KI (eds) Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices. Springer International Publishing, Cham, pp 127–146

    Chapter  Google Scholar 

  18. Pacioni NL et al (2015) Synthetic routes for the preparation of silver nanoparticles. In: Alarcon EI, Griffith M, Udekwu KI (eds) Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices. Springer International Publishing, Cham, pp 13–46

    Chapter  Google Scholar 

  19. Iqbal P, Preece JA, Mendes PM (2012) Nanotechnology: the “top-down” and “bottom-up” approaches. In: Supramolecular chemistry. John Wiley & Sons, Ltd, Hoboken, New Jersey, USA

    Google Scholar 

  20. Cushing BL, Kolesnichenko VL, O'Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946

    Article  Google Scholar 

  21. Lingane JJ, Larson WD (1936) The standard electrode potential of silver. J Am Chem Soc 58(12):2647–2648

    Article  Google Scholar 

  22. Iravani S et al (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    Google Scholar 

  23. Kruis FE, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69:329–334

    Article  Google Scholar 

  24. Magnusson MH et al (1999) Gold nanoparticles: production, reshaping, and thermal charging. J Nanopart Res 1(2):243–251

    Article  Google Scholar 

  25. Jung JH et al (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37(12):1662–1670

    Article  MathSciNet  Google Scholar 

  26. Dolgaev SI et al (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Surf Sci 186(1):546–551

    Article  Google Scholar 

  27. Mafuné F et al (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105(22):5114–5120

    Article  Google Scholar 

  28. Tsuji T et al (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202(1):80–85

    Article  Google Scholar 

  29. Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C 10(1):33–56

    Article  Google Scholar 

  30. Rafique M et al (2016) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed B:1–20

    Google Scholar 

  31. Rónavári A et al (2017) Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study. Int J Nanomedicine 12:871–883

    Article  Google Scholar 

  32. Jadhav K et al (2016) Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J Photochem Photobiol B 155:109–115

    Article  Google Scholar 

  33. Zhang X-F et al (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534

    Article  Google Scholar 

  34. Alarcon EI et al (2016) Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale 8(12):6484–6489

    Article  Google Scholar 

  35. Ahumada M et al (2016) Spherical silver nanoparticles in the detection of thermally denatured collagens. Anal Bioanal Chem 408(8):1993–1996

    Article  Google Scholar 

  36. Mikhlin YL et al (2014) Oxidation of Ag nanoparticles in aqueous media: effect of particle size and capping. Appl Surf Sci 297:75–83

    Article  Google Scholar 

  37. Toh HS, Jurkschat K, Compton RG (2015) The influence of the capping agent on the oxidation of silver nanoparticles: Nano-impacts versus stripping voltammetry. Chem Eur J 21(7):2998–3004

    Article  Google Scholar 

  38. Ajitha B et al (2016) Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Adv 6(42):36171–36179

    Article  Google Scholar 

  39. Ahumada M et al (2017) Association models for binding of molecules to nanostructures. Analyst 142(12):2067–2089

    Article  Google Scholar 

  40. Thordarson P (2011) Determining association constants from titration experiments in supramolecular chemistry. Chem Soc Rev 40(3):1305–1323

    Article  Google Scholar 

  41. Monopoli MP et al (2011) Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534

    Article  Google Scholar 

  42. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47

    Article  Google Scholar 

  43. Rahman M et al (2013) Nanoparticle and protein corona. In: Protein-nanoparticle interactions: the bio-nano interface. Springer, Heidelberg, pp 21–44

    Chapter  Google Scholar 

  44. Pavlin M, Bregar VB (2012) Stability of nanoparticle suspensions in different biologically relevant media. Dig J Nanomater Biostruct 4(7):1389–1400

    Google Scholar 

  45. Chambers BA et al (2014) Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ Sci Technol 48(1):761–769

    Article  Google Scholar 

  46. Zhou W et al (2016) Effects of pH, electrolyte, humic acid, and light exposure on the long-term fate of silver nanoparticles. Environ Sci Technol 50(22):12214–12224

    Article  Google Scholar 

  47. Niu Z, Li Y (2014) Removal and utilization of capping agents in Nanocatalysis. Chem Mater 26(1):72–83

    Article  Google Scholar 

  48. Poblete H et al (2016) New insights into peptide-silver nanoparticle interaction: deciphering the role of cysteine and lysine in the peptide sequence. Langmuir 32(1):265–273

    Article  Google Scholar 

  49. Vignoni M et al (2014) LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control. Nanoscale 6(11):5725–5728

    Article  Google Scholar 

  50. Palafox-Hernandez JP et al (2014) Comparative study of materials-binding peptide interactions with gold and silver surfaces and nanostructures: a thermodynamic basis for biological selectivity of inorganic materials. Chem Mater 26(17):4960–4969

    Article  Google Scholar 

  51. Hughes ZE, Wright LB, Walsh TR (2013) Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with gold. Langmuir 29(43):13217–13229

    Article  Google Scholar 

  52. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116(5):2775–2825

    Article  Google Scholar 

  53. Watanabe S, Jorgensen EM (2012) Visualizing proteins in electron micrographs at nanometer resolution. Methods Cell Biol 111. https://doi.org/10.1016/B978-0-12-416026-2.00015-7

    Google Scholar 

  54. Alarcon E et al (2013) Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. J Nanopart Res 15(1):1–14

    Article  Google Scholar 

  55. Ramos R et al (2011) Wound healing activity of the human antimicrobial peptide LL37. Peptides 32(7):1469–1476

    Article  Google Scholar 

  56. Tiwari S et al (2014) Vitamin D deficiency is associated with inflammatory cytokine concentrations in patients with diabetic foot infection. Brit J Nutr 112(12):1938–1943

    Article  Google Scholar 

  57. Karakas A et al (2014) Predictive value of soluble CD14, Interleukin-6 and Procalcitonin for lower extremity amputation in people with diabetes with foot ulcers: a pilot study. Pak J Med Sci 30(3):578–582

    Google Scholar 

  58. Alarcon EI et al (2012) The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 33(19):4947–4956

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ahumada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahumada, M., Suuronen, E.J., Alarcon, E.I. (2019). Biomolecule Silver Nanoparticle-Based Materials for Biomedical Applications. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_161

Download citation

Publish with us

Policies and ethics