Skip to main content

Partial Desalination of Saline Irrigation Water Using [FexOy(OH)z(H2O)m)n+/−]

  • Reference work entry
  • First Online:
  • 218 Accesses

Abstract

Arable crop yields decrease with increased irrigation water salinity. The low wholesale value ($/m3) of most crops coupled with a relatively high irrigation water demand (m3/ha) ensures that desalination, or partially desalination, of saline irrigation water is not economically viable in most locations unless the partially desalinated water can be delivered to the field for an incremental processing cost of less than about $0.2/m3. Decreases in irrigation water salinity by 20–50% can (depending on crop variety, location, and initial water salinity) have the potential to substantially increase crop yields (e.g., by 20% to more than 500%). Air stable, metal complexes ([FexOy(OH)z(H2O)m)n+/−]) form an inexpensive, reusable, desalination catalyst which can allow batches of irrigation water to be partially desalinated at source for an incremental cost of less than $0.1/m3. The small footprint of the reactor units and low capital cost indicates that this technology could provide an economically viable solution for the provision of 1 to 400 m3/d of partially desalinated irrigation water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ambrosi A, Tessaro IC (2013) Study on Potassium permanganate chemical treatment of discarded reverse osmosis membranes aiming at their reuse. Sep Sci Technol 48:1537–1543

    Article  Google Scholar 

  2. Antia DDJ (1986) Kinetic method for modelling vitrinite reflectance. Geology 14:606–608

    Article  Google Scholar 

  3. Antia DDJ (2010) Sustainable zero-valent metal (ZVM) water treatment associated with diffusion, infiltration, abstraction and recirculation. Sustainability 2:2988–3073

    Article  Google Scholar 

  4. Antia DDJ (2011) Modification of aquifer pore water by static diffusion using nano-zero-valent metals. Water 3:79–112

    Article  Google Scholar 

  5. Antia DDJ (2014) Groundwater water remediation by static diffusion using nano-zero valent metals [ZVM](Fe0, Cu0, Al0), n-FeHn+, n-Fe(OH)x, n-FeOOH, n-Fe-[OxHy](n+/−). In: Kharisov BI, Kharissova OV, Dias HVR (eds) Nanomaterials for environmental protection, 1st edn. Wiley Inc., Hoboken, pp 3–25. Chapter 1

    Google Scholar 

  6. Antia DDJ (2015) Desalination of water using ZVI, Fe0. Water 7:3671–3831

    Article  Google Scholar 

  7. Antia DDJ (2015) Desalination of groundwater and impoundments using nano-zero valent iron, Fe0. Meteorol Hydrol Water Manag 3(1):21–38

    Article  Google Scholar 

  8. Antia DDJ (2016) ZVI (Fe0) Desalination: Stability of product water. Resources 5:15

    Article  Google Scholar 

  9. Antia DDJ (2016) Desalination of irrigation water, livestock water and reject brine using n-ZVM (Fe0, Al0, Cu0). In: Hussain CM, Kharisov B (eds) Advanced environmental analysis applications of nanomaterials, RSC detection science series No. 10, vol 2, 1st edn. Royal Society of Chemistry, London., Chapter 28, pp 237–272

    Google Scholar 

  10. Antia DDJ (2016) Water remediation—water remediation using nano-zero-valent metals (n-ZVM). In: Kharisov BI, Kharissova OV, Ortiz-Mendez U (eds) CRC concise encyclopedia of nanotechnology, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1103–1120. Chapter 84

    Google Scholar 

  11. Antia DDJ (2017) Provision of desalinated irrigation water by the desalination of groundwater within a saline aquifer. Hydrology 4:1

    Article  Google Scholar 

  12. Antia DDJ (2017) Irrigation water desalination using PVP (Polyvinylpyrrolidone) coated n-Fe0 (ZVI, zero valent iron). In: Hussain CM, Mishra A (eds) New polymer nanocomposites for environmental remediation, 1st edn. Elsevier, Amsterdam. Chapter 26

    Chapter  Google Scholar 

  13. Antia DDJ (2017) Direct synthesis of air-stable metal complexes for desalination (and water treatment). In: Kharisov BI (ed) Handbook on the direct synthesis of metal complexes. Elsevier, Amsterdam. Chapter 2

    Chapter  Google Scholar 

  14. Ayers RS, Westcot DW (1994) Water quality for agriculture; irrigation and drainage. Paper No. 29, rev 1. Reprinted 1989, 1994; Food and Agriculture Organization of the United Nations, Rome, 1994

    Google Scholar 

  15. Branan C (2015) Rules of thumb for chemical engineers. Elsevier, Amsterdam

    Google Scholar 

  16. BS2846 (1975) Guide to the statistical interpretation of data – Part 1: Routine analysis of quantitative data. Updated 1995, confirmed 2/8/2013, British Standards Institute, UK

    Google Scholar 

  17. Burn S, Hoang M, Zarzo D, Olewiak F, Campos E, Bolto B, Barron O (2015) Desalination techniques – a review of the opportunities in agriculture. Desalination 364:2–26

    Article  Google Scholar 

  18. Cantliffe DJ, Webb JE, Van Sickle JJ, Shaw NL (2008) The economic feasibility of greenhouse grown cucumbers as an alternative to field production in North Central Florida. Proc Florida State Hort Soc 121:222–227

    Google Scholar 

  19. Chen X (2015) Modeling of experimental adsorption isotherm data. Information 6:14–22

    Article  Google Scholar 

  20. Chong TH, Loo S-L, Fane AG, Krantz WB (2015) Energy-efficient reverse osmosis desalination: effect of retentate recycle and pump and energy recovery device efficiencies. Desalination 365:15–31

    Article  Google Scholar 

  21. DEFR (2016) Fruit and vegetable wholesale prices – July 2016. National Statistics. Department for Environment, Food and Rural affairs, London, 8 Aug 2016

    Google Scholar 

  22. Ebbing DD, Gammon SD (1999) General chemistry, 6th edn. Houghton Mifflin, Boston

    Google Scholar 

  23. Frick JM, Feris LA, Tessaro IC (2014) Evaluation of pretreatments for a blowdown stream to feed a filtration system with discarded reverse osmosis membranes. Desalination 341:126–134

    Article  Google Scholar 

  24. Fronczyk J, Pawluk K, Michniak M (2010) Application of permeable reactive barriers near roads for chloride ions removal. Ann Warsaw Univ Life Sci SGGW Land Reclam 42:249–259

    Article  Google Scholar 

  25. Fronczyk J, Pawluk K, Garbulewski K (2012) Multilayer PRBs—effective technology for protection of the groundwater environment in traffic infrastructures. Chem Eng Trans 28:67–72

    Google Scholar 

  26. Garnovskii AD, Kharisov B (1999) Direct synthesis of coordination and organometallic compounds. Elsevier, Amsterdam

    Google Scholar 

  27. Garnovskii AD, Sennikova EV, Kharisov BI (2009) Coordination aspects in modern inorganic chemistry. Open Inorg Chem J 3:1–20

    Article  Google Scholar 

  28. Glasson (2014) Winter seed varieties. Seeds 2014/2015, Wynnstay. Glasson Grain Ltd., Lancaster

    Google Scholar 

  29. Hoogeveen J, Faures JM, Peiser L, Burke J, van de Giesen N (2015) GlobWat – a global water balance model to assess water usage in irrigated agriculture. Hydrol Earth Syst Sci 19:3829–3844

    Article  Google Scholar 

  30. Hwang Y, Kim D, Shin H-S (2015) Inhibition of nitrate reduction by NaCl adsorption on a nano-zero valent iron surface during concentrate treatment for water reuse. Environ Technol 36:1178–1187

    Article  Google Scholar 

  31. IM (2016) Monthly wheat prices 2006–2016. http://www.indexmundi.com/commodities/?commodity=wheat&months=120. Accessed 10 Dec 2016

  32. IM (2017) Wheat yield by country in t/hea, 2016; www.indexmundi.com/agriculture/?commodity=wheat&graph=yield. Accessed 13 Jan 2017

  33. Jones D (2015) Wheat yield world record shattered in Lincolnshire. Farmers Weekly 24 Aug 2015. http://www.fwi.co.uk/arable/wheat-yield-world-record-shattered-in-lincolnshire.htm. Accessed 6 October 2017

  34. Jones D (2015) Northumberland grower breaks world wheat yield record. Farmers Weekly 21 Sept 2015. http://www.fwi.co.uk/arablenorthumberland-grower-breaks-world-wheat-yield-record.htm. Accessed 6 October 2017

  35. Kharisov BI, Garnovskii AD, Gojon-Zorrilla G, Berdonosov SS (1996) Direct synthesis of metal complexes starting from zero valent metals. Part II. Synthesis of metal complexes by oxidative dissolution of metals. Rev Soc Quim Mex 40:173–182

    Google Scholar 

  36. Kumar M, Adham SS, Pearce WR (2006) Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type. Environ Sci Technol 40:2037–2044

    Article  Google Scholar 

  37. Lacy J, Giblin K (2006) Growing eight tonnes a hectare of irrigated wheat in southern NSW, Primefact, vol 197. NSW Department of Primary Industries, Orange

    Google Scholar 

  38. Lawler W, Alvarez-Gaitan J, Leslie G, Le-Clech P (2015) Comparative life cycle assessment of end of life options for reverse osmosis membrane. Desalination 357:45–54

    Article  Google Scholar 

  39. Luo W, Phan HV, Xie M, Orice WE, Elimelech M, Nghiem LD (2017) Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: biological stability, membrane fouling, and contaminant removal. Water Res 109:122–134

    Article  Google Scholar 

  40. Malek C (2017) New irrigation technique grows cucumbers without wasting water. The National, UAE, 10 Jan 2017

    Google Scholar 

  41. McGovern RK, Lienhard V JH (2014) On the potential of forward osmosis to energetically outperform reverse osmosis desalination. J Membr Sci 469: 245–250

    Article  Google Scholar 

  42. Michniak N (2010) Application of permeable reactive barriers near roads for chloride ions removal. MSc thesis. Warsaw University of Life Sciences, Warsaw

    Google Scholar 

  43. Nadagouda MN, Castle AB, Murdock RC, Hussain SM, Varma RS (2010) In vitrio biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem 12:114–122

    Article  Google Scholar 

  44. OECD (2016) Tackling the challenges of agricultural groundwater use. Trade and Agriculture Directorate. OECD Publishing, Paris

    Google Scholar 

  45. Pontie M (2015) Old RO membranes: solutions for reuse. Desalination Water Treat 53:1492–1498

    Article  Google Scholar 

  46. Sahin U, Kuslu Y, Kizilogu FM (2015) Response of cucumbers to different irrigation regimes applied through drip-irrigation system. J Anim Plant Sci 25:198–205

    Google Scholar 

  47. Subramani S, Panda RC (2014) Statistical regression and modelling analyses for reverse osmosis desalination process. Desalination 351:120–127

    Article  Google Scholar 

  48. Tang S, Bourne R, Smith R, Pollakoff M (2008) The 24 principles of green engineering and green chemistry: “improvements in productivity”. Green Chem 10:268–269

    Article  Google Scholar 

  49. Twigg MV (ed) (1989) The catalyst handbook. Wolfe Publishing Ltd, London

    Google Scholar 

  50. Wada Y, Florke M, Hanasaki N, Eisner S, Fischer G, Tramberend S, Satoh Y, van Vlient MTH, Yillia P, Ringler C, Burek P, Wiberg D (2016) Modelling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci Model Dev 9:175–222

    Article  Google Scholar 

  51. Wilkin RT, McNeil MS (2003) Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage. Chemosphere 53:715–725

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. J. Antia .

Editor information

Editors and Affiliations

Tabulated Data and Analyses

Tabulated Data and Analyses

Desalination Model

The current ASMC desalination model assumes that the ASMC acts as a Dubinin-Astakhov adsorption desorption catalyst [11, 19]. If the ASMC catalyst is given the notation [Fe+-X]ads, then Cl (or ClO, ClxOyn−) ions are adsorbed as [8, 11,12,13]:

$$ {\left[{\mathrm{Fe}}^{+}-{X}^{-}\right]}_{\mathrm{ads}}+2{\mathrm{Cl}}^{-}={\left[{\mathrm{Fe}}^{3+}-{\left({\mathrm{Cl}}^{-}\right)}_2-{X}^{-}\right]}_{\mathrm{ads}}+2{\mathrm{e}}^{-}\left(\mathrm{anodic}\right) $$
(6)

X = anions, e.g., [Oy(OH)z(H2O)m)n−]. Sodium ions are adsorbed as:

$$ {\left[{\mathrm{Fe}}^{+}-{X}^{-}\right]}_{\mathrm{ads}}+2{\mathrm{Na}}^{+}+2{\mathrm{OH}}^{-}={\left[{\mathrm{Fe}}^{3+}-{\left({\mathrm{Na}\mathrm{O}}^{-}\right)}_2-{X}^{-}\right]}_{\mathrm{ads}}+2{\mathrm{H}}^{+}+2{\mathrm{e}}^{-}\, \left(\mathrm{anodic}\right) $$
(7)
$$ {\left[{\mathrm{Fe}}^{3+}-{\left({\mathrm{NaO}}^{-}\right)}_2-{X}^{-}\right]}_{\mathrm{ads}}+2{\mathrm{H}}^{+}+2{\mathrm{e}}^{-}\, ={\left[\left[{\mathrm{Fe}}^{+}-{X}^{-}\right]{\left[\mathrm{NaOH}\right]}_2\right]}_{\mathrm{ads}}\, \left(\mathrm{cathodic}\right) $$
(8)

The desalination desorption environment can contain a flora of aerobic iron bacteria, e.g., Leptothrix discophora [12]. This implies that desorption takes the form [12]:

$$ {\left[\left[{\mathrm{Fe}}^{3+}-{\left({\mathrm{Cl}}^{-}\right)}_2-{X}^{-}\right]\right]}_{\mathrm{ads}}+{\mathrm{Cl}}^{-}+2{\mathrm{e}}^{-}={\left[{\mathrm{Fe}}^{+}-{X}^{-}\right]}_{\mathrm{ads}}+3{\mathrm{Cl}}^{-}\left(\mathrm{cathodic}\right) $$
(9)
$$ {\left[\left[{\mathrm{Fe}}^{+}-{X}^{-}\right]\ {\left[{\mathrm{Na}}^{+}-{\mathrm{OH}}^{-}\right]}_2\right]}_{\mathrm{ads}}={\left[{\mathrm{Fe}}^{+}-{X}^{-}\right]}_{\mathrm{ads}}+{2\mathrm{Na}}^{+}+0.{5\mathrm{O}}_2+{\mathrm{H}}_2\mathrm{O}+{2\mathrm{e}}^{-}\ \left(\mathrm{anodic}\right) $$
(10)

Desorption into dead-end porosity results in:

$$ {{\mathrm{Na}}^{+}}_{\mathrm{aq}}+{{\mathrm{Cl}}^{-}}_{\mathrm{aq}}={\left[{\mathrm{Na}}^{+}{\mathrm{Cl}}^{-}\right]}_{\mathrm{aq},\mathrm{s}} $$
(11)

The associated water may contain concentrations of NaOH, NaHClO, HClO (e.;g., [6, 8, 11]) and related species, e.g.,

$$ {{\mathrm{Na}}^{+}}_{\mathrm{aq}}+{\mathrm{OH}}^{-}={\left[{\mathrm{Na}}^{+}{\mathrm{OH}}^{-}\right]}_{\mathrm{aq},\mathrm{s}} $$
(12)
$$ {{\mathrm{Na}}^{+}}_{\mathrm{aq}}+{\mathrm{OH}}^{-}+{\mathrm{Cl}}^{-}={\left[{\mathrm{Na}}^{+}{\mathrm{Cl}}^{-}{\mathrm{OH}}^{-}\right]}_{\mathrm{aq}} $$
(13)
$$ {\mathrm{OH}}^{-}+{\mathrm{Cl}}^{-}={\left[{\mathrm{Cl}}^{-}{\mathrm{OH}}^{-}\right]}_{\mathrm{aq}} $$
(14)

Examples of halite precipitation in an ASMC pellet following desalination are provided in Fig. 10. The halite can contain holdfasts associated with the aerobic iron bacterium Leptothrix discophora (Fig. 10).

Fig. 10
figure 10

Type A (ST [6]) catalyst examples following desalination. Reflected light. (a) polished section showing halite infilled porosity; Field of view = 0.91 mm; (b) cleaved section showing halite growing from the ASMC into the pores; Field of view = 0.91 mm; (c) detail of halite in the cleaved section showing embedded “doughnut shaped” holdfasts of the filamentous bacteria Leptothrix discophora; Field of view = 0.15 mm

Desalination Rate Constant

The observed desalination reaction rate constant kobserved [22, 51] is:

$$ k={k}_{observed}={k}_{normalized}\ {P}_w\ {a}_s=\ln \left({\mathrm{C}}_{t= 0}/{\mathrm{C}}_{t=n}\right)/t=\left[\mathrm{A}\right]\ \exp \left(-{\mathrm{E}}_{\mathrm{a}}/\mathrm{RT}\right) $$
(15)

knormalized = reaction rate constant (moles/unit volume/unit time) normalized to 1 g Fe/L water and a surface area of 1 m2/g Fe; Pw = Fe concentration, g Fe/L; as = is a measure of the degree of contact between a reactive surface and the environment (e.g., m2/g Fe). t = time spent in the reaction environment, seconds; Ct = 0 = ion concentration entering the reaction environment at time t = 0; Ct = n = ion concentration leaving the reaction environment at time t = n; k = observed rate constant; Ea = activation energy of the reaction; R = universal gas constant; [A] = the pre-exponential factor; T = temperature, K; as a first approximation the desalination reaction can be considered to be first order. Desalination associated with Type B catalysts (Fig. 1) either ceases or switches to a lower rate constant, after a short period of operation [6, 8, 11]. The impact on k of catalyst aging, catalyst poisoning, catalyst reactivation, catalyst aging, and catalyst deactivation varies with catalyst formulation, water chemistry, and reactor type. k can remain constant or increase with increasing feed water salinity [6, 8, 11, 13].

Expected Desalination When the Amount of Desalination Is Equilibrium Limited

ASMC desalination is equilibrium limited (e.g., Fig. 1) for both Type A and Type B catalysts. The equilibrium salinity varies with catalyst (e.g., [6, 8, 11]).

Prediction of reactor performance under a range of operating conditions (batch size, temperature, pressure, batch duration, and Pw) can be undertaken for equilibrium limited reactions [49]:

$$ {\mathrm{C}}_{t=n}={\mathrm{C}}_{t= 0}\ 1/\exp \left({P}_w\ {\mathrm{k}}_{\mathrm{a}}\ {k}_{actual}\ t\right) $$
(16)

Ce = Equilibrium NaCl concentration in the product water, g/L, Ct = n ≥ Ce. ka = The catalyst activity relative to the design activity; t = Batch duration, seconds. Mean Ce (regression equation) for catalyst K (Fig. 2b) approximates to:

$$ {\mathrm{C}}_{\mathrm{e}}=-0.0591\ {\left({\mathrm{C}}_{t= 0}\right)}^2+0.743\ \left({\mathrm{C}}_{t= 0}\right)\, -\mathrm{Mean} $$
(17)
$$ {\mathrm{C}}_{\mathrm{e}}=-0.0798\ {\left({\mathrm{C}}_{t= 0}\right)}^2+0.9025\ \left({\mathrm{C}}_{t= 0}\right)\, -\mathrm{Upper}\ \mathrm{Limit} $$
(18)
$$ {\mathrm{C}}_{\mathrm{e}}=-0.0581\ {\left({\mathrm{C}}_{t= 0}\right)}^2+0.6287\ \left({\mathrm{C}}_{t= 0}\right)\, -\mathrm{Lower}\ \mathrm{Limit} $$
(19)

R2 (mean) = 86.83%; n = 19; Ci = 1.3–5.9 g/L; Temperature = −5 °C to 15 °C; 800 L/batch; Pw = 0.072 g Fe/L.

Statistical Analyses

All agricultural landowners will want to be able to predict the expected salinity of the partially desalinated irrigation water prior to making a commercial investment decision to install an ASMC desalination reactor + catalyst.

This decision will be based on the desalination distributions associated with commercial scale trials. The initial data required is the desalination associated with each of nt batches of water from a single reactor train (Fig. 3).

The probability distribution is calculated using the nonparametric rank order probability assessment eq. [2]:

$$ \mathrm{Probability}=\mathrm{Observation} \operatorname {rank}\ \mathrm{number}/\left(\mathrm{Total}\ \mathrm{Number}\ \mathrm{of}\ \mathrm{Observations}+1\right) $$
(20)

Each observation refers to the salinity associated with a specific batch of water exiting a single reactor train. The relationship between desalination and probability can be described (for a specific catalyst) using a regression equation, e.g.,:

$$ \mathrm{Desalination}=\mathrm{a}\left[P\right]+\mathrm{b} $$
(21)
$$ \mathrm{Desalination}=\mathrm{a}{\left[P\right]}^5+\mathrm{b}{\left[P\right]}^4+\mathrm{c}{\left[P\right]}^3+\mathrm{d}{\left[P\right]}^2+\mathrm{e}\left[P\right]+\mathrm{f} $$
(22)

Where a to f are regression constants, P = probability (lower and upper limits are 0 and 1). P is replaced by a random number (Rn) in a Monte Carlo analysis. Eq. 21 assumes a linear correlation and Eq. 22 assumes a polynomial correlation. The accuracy of this regression analysis increases as nt increases.

Monte Carlo Analysis: Salinity of Water Leaving the Desalination Reactor

Eq. 21, 22 allow a Monte Carlo analysis to be undertaken (e.g., [2]) to determine the expected desalination associated with placing n reactor trains in parallel within a reactor, where the desalination associated with each iteration is calculated as follows:

$$ \mathrm{Iteration}\ \mathrm{Desalination},{\mathrm{I}}_{\mathrm{d}}\, =\, \sum \left(\mathrm{a}\left[{\mathrm{R}}_{\mathrm{n}}\right]+\mathrm{b}\right)/n $$
(23)
$$ \mathrm{Iteration}\ \mathrm{Desalination},{\mathrm{I}}_{\mathrm{d}}\, =\sum \left(\mathrm{a}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^5+\mathrm{b}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^4+\mathrm{c}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^3+\mathrm{d}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^2+\mathrm{e}\left[{\mathrm{R}}_{\mathrm{n}}\right]+\mathrm{f}\right)/n $$
(24)

The summation is for reactor trains 1 to n where each train has the same capacity (weighting). a to f = constants. A rank order analysis (Eq. 20) of the Id values will provide the anticipated desalination distribution associated with a reactor unit containing parallel reactor trains. The number of iterations required for a Monte Carlo analysis is between 100 and 10,000.

Monte Carlo Analysis: Salinity of Water in the Product Water Tank

Each batch iteration associated with a single reactor train or a multiple reactor train reactor will discharge water into a product water storage tank. The salinity of the product water tank is a function of its size and can be calculated as:

$$ \mathrm{Tank}\ \mathrm{Salinity},{\mathrm{I}}_{\mathrm{t}}\, ={\mathrm{C}}_{\mathrm{t}=0}\ \left(1-\left(\sum \left(\mathrm{a}\left[{\mathrm{R}}_{\mathrm{n}}\right]+\mathrm{b}\right)/m\right)\right){-} \mathrm{Single}\ \mathrm{train} $$
(25)
$$ \mathrm{TankSalinity},{\mathrm{I}}_{\mathrm{t}}\, ={\mathrm{C}}_{\mathrm{t}=0}\left(1-\left(\sum \left(\mathrm{a}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^5+\mathrm{b}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^4+\mathrm{c}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^3+\mathrm{d}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^2+\mathrm{e}\left[{\mathrm{R}}_{\mathrm{n}}\right]+\mathrm{f}\right)/m\right)\right) $$
(26)
$$ \mathrm{Tank}\ \mathrm{Salinity},{\mathrm{I}}_{\mathrm{t}}\, ={\mathrm{C}}_{\mathrm{t}=0}\ \left(1-\left(\sum \left(\sum \left(\mathrm{a}\left[{\mathrm{R}}_{\mathrm{n}}\right]+\mathrm{b}\right)/n\right)/m\right)\right){-} \mathrm{Multiple}\ \mathrm{trains} $$
(27)
$$ {\displaystyle \begin{array}{ll}& \mathrm{Tank}\ \mathrm{Salinity},{\mathrm{I}}_{\mathrm{t}}\, \\ {}& ={\mathrm{C}}_{\mathrm{t}=0}\ \left(1-\left(\sum \left(\sum \left(\mathrm{a}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^5+\mathrm{b}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^4+\mathrm{c}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^3+\mathrm{d}{\left[{\mathrm{R}}_{\mathrm{n}}\right]}^2+\mathrm{e}\left[{\mathrm{R}}_{\mathrm{n}}\right]+\mathrm{f}\right)/n\right)/m\right)\right)\end{array}} $$
(28)

Where the summation is for feed water batches 1 to m, and m batches are required to fill the tank. The desalination represented by the tank after m batches is (∑ (a[Rn] + b)/m) or (∑ (∑ (a[Rn] + b)/n)/m). Since each batch of water contains a volume of water, Vn, it follows that the volume of water in the tank after m batches is mVn.

99% Confidence Limits on the Mean Desalination

The mean and standard deviation associated with m batches of product water defines the upper and lower 99% confidence limits for a specific value of m, where (BS2846 [16]):

$$ 99\%\mathrm{confidence}\ \mathrm{limit}=\mathrm{mean}+/-\left(\mathrm{Standard}\ \mathrm{deviation}\ \left({\mathrm{t}}_{0.995}/{(m)}^{0.5}\right)\right) $$
(29)

t0.995 = two sided 99% confidence value for the Students t test associated with m samples. Tabulated in BS2846 [16]). If m is very large (e.g., >200), then t0.995 approximates to z = 2.576.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Antia, D.D.J. (2019). Partial Desalination of Saline Irrigation Water Using [FexOy(OH)z(H2O)m)n+/−]. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_122

Download citation

Publish with us

Policies and ethics