Skip to main content

Metal Hydrides for Energy Storage

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Problem of hydrogen storage is a key point for the extensive use of hydrogen as an energy carrier. Metal hydrides provide a safe and very often reversible way to store energy that can be accessed after hydrogen release and its further oxidation. To be economically feasible, the metal or alloy used for hydrogen storage has to exhibit high hydrogen storage capacity, low temperature of the hydrogen release, and be low cost. Unfortunately, among many metals and alloys reacting with hydrogen, there is no such a material that meets all the necessary criteria. In recent years, many efforts have been made aiming to optimize the characteristics of metal hydrides for energy storage, and this chapter provides a brief review of the most important achievements in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30:809–819. https://doi.org/10.1016/j.ijhydene.2005.02.003

    Article  Google Scholar 

  2. Dincer I (2012) Green methods for hydrogen production. Int J Hydrog Energy 37:1954–1971. https://doi.org/10.1016/j.ijhydene.2011.03.173

    Article  Google Scholar 

  3. Dincer I, Acar C (2014) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy 40:11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035

    Article  Google Scholar 

  4. Lang Y, Arnepalli RR, Tiwari A (2011) A review on hydrogen production: Methods, materials and nanotechnology. J Nanosci Nanotechnol 11:3719–3739. https://doi.org/10.1166/jnn.2011.4157

    Article  Google Scholar 

  5. Barbir F (2005) PEM fuel cells. Theory and practice, Elsevier Academic, Burlington

    Google Scholar 

  6. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl Energy 88:981–1007. https://doi.org/10.1016/j.apenergy.2010.09.030

    Article  Google Scholar 

  7. Mench MM (2008) Fuel cell engines. Wiley, Hoboken

    Book  Google Scholar 

  8. Studer S, Stucki S, Speight JD (2008) Hydrogen as a fuel. In: Züttel A, Borgschulte A, Schlapbach L (eds) Hydrogen as a future energy carrier. Wiley, Weinheim, pp 23–69

    Chapter  Google Scholar 

  9. Weitkamp J, Fritz M, Ernst S (1995) Zeolites as media for hydrogen storage. Int J Hydrog Energy 20:967–970. https://doi.org/10.1016/0360-3199(95)00058-L

    Article  Google Scholar 

  10. Anderson PA (2008) Storage of hydrogen in zeolites. In: Walker G (ed) Solid-State Hydrogen Storage: Materials and Chemistry, Series in Electronic and Optical Materials. Woodhead Publishing, Cambridge, pp 223–260

    Chapter  Google Scholar 

  11. Kabbour H, Baumann T, Satcher J, Saulnier A, Ahn C (2006) Toward new candidates for hydrogen storage: High surface area carbon aerogels. Chem Mater 18:6085–6087. https://doi.org/10.1021/cm062329a

    Article  Google Scholar 

  12. Jin Z, Sun Z, Simpson LJ, O’Neill KJ, Parilla PA, Li Y, Stadie NP, Ahn CC, Kittrell C, Tour JM (2010) Solution-phase synthesis of heteroatom-substituted carbon scaffolds for hydrogen storage. J Am Chem Soc 132:15246–15251. https://doi.org/10.1021/ja105428d

    Article  Google Scholar 

  13. Stadie NP, Vajo JJ, Cumberland RW, Wilson AA, Ahn CC, Fultz B (2012) Zeolite-templated carbon materials for high-pressure hydrogen storage. Langmuir 28:10057–10063. https://doi.org/10.1021/la302050m

    Article  Google Scholar 

  14. Guo CX, Wang Y, Li CM (2013) Hierarchical graphene-based material for over 4.0 wt % physisorption hydrogen storage capacity. ACS Sustain Chem Eng 1:14–18. https://doi.org/10.1021/ja105428d

    Article  Google Scholar 

  15. Jiang H-L, Liu B, Lan Y-Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) From metal–organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J Am Chem Soc 133:11854–11857. https://doi.org/10.1021/ja203184k

    Article  Google Scholar 

  16. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444–1230444. https://doi.org/10.1126/science.1230444

    Article  Google Scholar 

  17. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220. https://doi.org/10.1016/j.nanoen.2011.11.006

    Article  Google Scholar 

  18. Zhou L, Zhou Y, Sun Y (2004) Enhanced storage of hydrogen at the temperature of liquid nitrogen. Int J Hydrog Energy 29:319–322. https://doi.org/10.1016/S0360-3199(03)00155-1

    Article  Google Scholar 

  19. Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562. https://doi.org/10.1038/nnano.2014.93

    Article  Google Scholar 

  20. Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132. https://doi.org/10.1021/cr0501846

    Article  Google Scholar 

  21. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: A review. Int J Hydrog Energy 32:1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022

    Article  Google Scholar 

  22. Jain IP, Jain P, Jain A (2010) Novel hydrogen storage materials: A review of lightweight complex hydridespuye. J Alloys Compd 503:303–339. https://doi.org/10.1016/j.jallcom.2010.04.250

    Article  Google Scholar 

  23. Xiong Z, Yong CK, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP, David WIF (2008) High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater 7:138–141. https://doi.org/10.1038/nmat2081

    Article  Google Scholar 

  24. Safronov AV, Jalisatgi SS, Lee HB, Hawthorne MF (2011) Chemical hydrogen storage using polynuclear borane anion salts. Int J Hydrog Energy 36:234–239. https://doi.org/10.1016/j.ijhydene.2010.08.120

    Article  Google Scholar 

  25. Lan R, Irvine JTS, Tao S (2012) Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrog Energy 37:1482–1494. https://doi.org/10.1016/j.ijhydene.2011.10.004

    Article  Google Scholar 

  26. Demirci UB (2017) Ammonia borane, a material with exceptional properties for chemical hydrogen storage. Int J Hydrog Energy 42:9978–10013. https://doi.org/10.1016/j.ijhydene.2017.01.154

    Article  Google Scholar 

  27. Wietelmann U, Felderhoff M, Rittmeyer P (2000) Hydrides. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim, pp 1–39

    Google Scholar 

  28. Züttel A, Hirscher M, Panella B, Yvon K, Orimo S, Bogdanović B, Felderhoff M, Schüth F, Borgschulte A, Goetze S, Suda S, Kelly MT (2008) Hydrogen storage. In: Züttel A, Borgschulte A, Schlapbach L (eds) Hydrogen as a future energy carrier. Wiley, Weinheim, pp 165–263

    Chapter  Google Scholar 

  29. Christmann K (1988) Interaction of hydrogen with solid surfaces. Surf Sci Rep 9:1–163. https://doi.org/10.1016/0167-5729(88)90009-X

    Article  Google Scholar 

  30. Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220. https://doi.org/10.1016/0039-6028(96)80007-0

    Article  Google Scholar 

  31. Groß A (1998) Reactions at surfaces studied by ab initio dynamics calculations. Surface Sci Rep 32(8):291–340

    Article  Google Scholar 

  32. Kroes GJ, Gross A, Baerends EJ, Scheffler M, McCormack DA (2002) Quantum theory of dissociative chemisorption on metal surfaces. Acc Chem Res 35:193–200. https://doi.org/10.1021/ar010104u

    Article  Google Scholar 

  33. Ferrin P, Kandoi S, Nilekar AU, Mavrikakis M (2012) Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf Sci 606:679–689. https://doi.org/10.1016/j.susc.2011.12.017

    Article  Google Scholar 

  34. Sandrock G (1999) Panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloys Compd 293:877–888. https://doi.org/10.1016/S0925-8388(99)00384-9

    Article  Google Scholar 

  35. Völkl J, Alefeld G (1978) Diffusion of hydrogen in metals. In: Alefeld G, Völkl J (eds) Hydrogen in Metals I: Basic Properties. Springer, Berlin/Heidelberg, pp 321–348

    Chapter  Google Scholar 

  36. Fukai Y (2005) The metal-hydrogen system. Basic bulk properties. Springer, Berlin/Heidelberg

    Google Scholar 

  37. Peisl H (1978) Lattice strains due to hydrogen in metals. In: Alefeld G, Völkl J (eds) Hydrogen in Metals I: Basic Properties. Springer, Berlin/Heidelberg, pp 53–74

    Chapter  Google Scholar 

  38. Glushko Thermocenter of the Russian Academy of Sciences (1994) IHED, “IVTAN” Association of RAS, Izhorskaya 13/19, Moscow 127412, Russia

    Google Scholar 

  39. Landolt-Börnstein - Group IV Physical chemistry (2001) Vol. 19A4. Thermodynamic properties of inorganic materials. Pure substances. Part 4 _ Compounds from HgH_g to ZnTe_g. Springer, Berlin/Heidelberg

    Google Scholar 

  40. Landolt-Börnstein - Group IV Physical Chemistry (2001) Vol. 19A4. Thermodynamic properties of inorganic materials. Pure substances. Part 4 _ Compounds from HgH_g to ZnTe_g. Springer, Berlin/Heidelberg

    Google Scholar 

  41. Landolt-Börnstein - Group IV Physical chemistry (2000) Vol. 19A3. Thermodynamic properties of inorganic materials. Pure substances. Part 3 _ Compounds from CoCl3_g to Ge3N4. Springer, Berlin/Heidelberg

    Google Scholar 

  42. Landolt-Börnstein - Group IV Physical Chemistry (1999) Vol. 19A2. Thermodynamic properties of inorganic materials. Pure substances. Part 2 _ Compounds from BeBr_g to ZrCl2_g. Springer, Berlin/Heidelberg

    Google Scholar 

  43. Treadwell WD, Sticher J (1953) Über den Wasserstoffdruck von Calciumhydrid. Helv Chim Acta 36:1820–1832

    Article  Google Scholar 

  44. Landolt-Börnstein - Group IV Physical chemistry (1999) Vol. 19A1. Thermodynamic properties of inorganic materials. Pure substances. Part 1 _ Elements and compounds from AgBr to Ba3N2. Springer, Berlin/Heidelberg

    Google Scholar 

  45. Fromm E, Hörz G (1980) Hydrogen, nitrogen, oxygen, and carbon in metals. Int Met Rev 25:269–311. https://doi.org/10.1179/imtr.1980.25.1.269

    Article  Google Scholar 

  46. Knacke O, Kubaschewski O, Hesselmann K (1991) Thermochemical properties of inorganic substances, 2nd edn. Springer, Berlin

    Google Scholar 

  47. Knacke O, Kubaschewski O, Hesselmann K (1991) Thermochemical properties of inorganic substances, 2nd edn. Springer, Berlin

    Google Scholar 

  48. Stull DR, Prophet H (1971) JANAF thermochemical tables, 2nd NSRDS ed. U.S. Gov Printing Office, Washington, DC

    Google Scholar 

  49. Wenzl H (1982) Properties and applications of metal hydrides in energy conversion systems. Int Met Rev 27:140–168. https://doi.org/10.1179/imr.1982.27.1.140

    Article  Google Scholar 

  50. Driessen A, Hemmes H, Griessen R (1985) Hydride formation at very high hydrogen pressure. Z Phys Chem 143:145–159. https://doi.org/10.1524/zpch.1985.143.143.145

    Article  Google Scholar 

  51. Lässer R, Klatt KH (1983) Solubility of hydrogen isotopes in palladium. Phys Rev B 28:748–758. https://doi.org/10.1103/PhysRevB.28.748

    Article  Google Scholar 

  52. Landolt-Börnstein - Group IV Physical Chemistry (1999) Vol. 19A2. Thermodynamic properties of inorganic materials. Pure substances. Part 2 _ Compounds from BeBr_g to ZrCl2_g. Springer, Berlin/Heidelberg

    Google Scholar 

  53. Behrens H, Ebel G (1981) Gases and carbon in metals. In: Physics Data, Bd. Fachinformationszentrum Energie, Physik, Mathematik, Karlsruhe, pp 5–14

    Google Scholar 

  54. Libowitz GG, Maeland AJ (1979) Hydrides. In: Gschneidner KA, Eyring L (eds) Handbook on the Physies and Chemistry of Rare Earths, vol 3. North-Holland, Amsterdam, p 299

    Google Scholar 

  55. Barin I (1995) Thermochemical data of pure Substances, 3rd edn. Wiley, Weinheim

    Book  Google Scholar 

  56. THERMODATA (1993) Grenoble Campus, 1001 Avenue Centrale, BP 66, F-38402 Saint Martin d’Hères, France

    Google Scholar 

  57. Landolt-Börnstein - Group IV Physical Chemistry (1999) Vol. 19A1. Thermodynamic properties of inorganic materials. Pure substances. Part 1 _ Elements and Compounds from AgBr to Ba3N2. Springer, Berlin/Heidelberg

    Google Scholar 

  58. Huot J (2010) Metal hydrides. In: Hirscher M (ed) Handbook of hydrogen storage. Wiley, Weinheim, pp 675–747

    Google Scholar 

  59. Pundt A, Kirchheim R (2006) Hydrogen in metals: Microstructural aspects. Annu Rev Mater Res 36:555–608. https://doi.org/10.1146/annurev.matsci.36.090804.094451

    Article  Google Scholar 

  60. Flanagan TB, Clewley JD (1982) Hysteresis in metal hydrides. J Less-Common Met 83:127–141. https://doi.org/10.1016/0022-5088(82)90176-X

    Article  Google Scholar 

  61. Puls MP (1984) Elastic and plastic accommodation effects on metal-hydride solubility. Acta Metall 32:1259–1269. https://doi.org/10.1016/0001-6160(84)90133-0

    Article  Google Scholar 

  62. Flanagan TB, Park C-N, Oates WA (1995) Hysteresis in solid state reactions. Prog Solid State Chem 23:291–363. https://doi.org/10.1016/0079-6786(95)00006-G

    Article  Google Scholar 

  63. Balasubramaniam R (1997) Hysteresis in metal hydrogen systems. J Alloys Compd 253:203–206. https://doi.org/10.1016/S0925-8388(96)02894-0

    Article  Google Scholar 

  64. Schwarz RB, Khachaturyan AG (1995) Thermodynamics of open two-phase systems with coherent interfaces. Phys Rev Lett 74:2523–2526

    Article  Google Scholar 

  65. Schwarz RB, Khachaturyan AG (2006) Thermodynamics of open two-phase systems with coherent interfaces: Application to metal-hydrogen systems. Acta Mater 54:313–323. https://doi.org/10.1016/j.actamat.2005.08.044

    Article  Google Scholar 

  66. Larsen JW, Livesay BR (1980) Hydriding kinetics of SmCo5. J Less Common Met 73:79–88. https://doi.org/10.1016/0022-5088(80)90345-8

    Article  Google Scholar 

  67. Shilov AL, Efremenko NE (1986) Effect of sloping pressure “plateau” in two-phase regions of hydride systems. Russ J Phys Chem 60:3024–3028

    Google Scholar 

  68. Fujitani BS, Nakamura H, Furukawa A, Nasako K, Satoh K, Saito T, Yonezu I (1993) A method for numerical expressions of P-C isotherms of hydrogen-absorbing alloys. Z Phys Chem 179:29–35. https://doi.org/10.1524/zpch.1992.1.1.029

    Article  Google Scholar 

  69. Lototsky MV, Yartys VA, Marinin VS, Lototsky NM (2003) Modelling of phase equilibria in metal-hydrogen systems. J Alloys Compd 356–357:27–31. https://doi.org/10.1016/S0925-8388(03)00095-1

    Article  Google Scholar 

  70. Park CN, Luo S, Flanagan TB (2004) Analysis of sloping plateaux in alloys and intermetallic hydrides I. Diagnostic features. J Alloys Compd 384:203–207. https://doi.org/10.1016/j.jallcom.2004.04.138

    Article  Google Scholar 

  71. Salomons E, Griessen R, De Groot DG, Magerl A (1988) Surface tension and subsurface sites of metallic nanocrystals determined from H-absorption. Europhys Lett 5:449–454. https://doi.org/10.1209/0295-5075/5/5/012

    Article  Google Scholar 

  72. Pundt A (2004) Hydrogen in nano-sized metals. Adv Eng Mater 6:11–21. https://doi.org/10.1002/adem.200300557

    Article  Google Scholar 

  73. Shegai T, Langhammer C (2011) Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy. Adv Mater 23:4409–4414. https://doi.org/10.1002/adma.201101976

    Article  Google Scholar 

  74. Chang B, Chen P, Liu BH, Li ZP, Wu J, Wang QD (1993) The activation mechanism of Mg-based hydrogen storage alloys. Z Phys Chem 181:259–267

    Article  Google Scholar 

  75. Zaluski L, Zaluska A, Ström-Olsen J (1997) Nanocrystalline metal hydrides. J Alloys Compd 253–254:70–79. https://doi.org/10.1016/S0925-8388(96)02985-4

    Article  Google Scholar 

  76. Williams M, Lototsky MV, Linkov VM, Nechaev AN, Solberg JK, Yartys VA (2009) Nanostructured surface coatings for the improvement of AB5-type hydrogen storage intermetallics. Int J Energy Res 33:1171–1179. https://doi.org/10.1002/er.1609

    Article  Google Scholar 

  77. Zhao B, Liu L, Ye Y, Hu S, Wu D, Zhang P (2016) Enhanced hydrogen capacity and absorption rate of LaNi4.25Al0.75 alloy in impure hydrogen by a combined approach of fluorination and palladium deposition. Int J Hydrog Energy 41:3465–3469. https://doi.org/10.1016/j.ijhydene.2015.12.167

    Article  Google Scholar 

  78. Zaluska A, Zaluski L, Ström-Olsen JO (1999) Nanocrystalline magnesium for hydrogen storage. J Alloys Compd 288:217–225. https://doi.org/10.1016/S0925-8388(99)00073-0

    Article  Google Scholar 

  79. Charbonnier J, De Rango P, Fruchart D, Miraglia S, Pontonnier L, Rivoirard S, Skryabina N, Vulliet P (2004) Hydrogenation of transition element additives (Ti, V) during ball milling of magnesium hydride. J Alloys Compd 383:205–208. https://doi.org/10.1016/j.jallcom.2004.04.059

    Article  Google Scholar 

  80. Bouaricha S, Dodelet J-P, Guay D, Huot J, Schulz R (2011) Study of the activation process of Mg-based hydrogen storage materials modified by graphite and other carbonaceous compounds. J Mater Res 16:2893–2905. https://doi.org/10.1557/JMR.2001.0398

    Article  Google Scholar 

  81. Jehan M, Fruchart D (2013) McPhy-Energy’s proposal for solid state hydrogen storage materials and systems. J Alloys Compd 580:S343–S348. https://doi.org/10.1016/j.jallcom.2013.03.266

    Article  Google Scholar 

  82. Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J Alloys Compd 292:247–252. https://doi.org/10.1016/S0925-8388(99)00442-9

    Article  Google Scholar 

  83. Shang CX, Bououdina M, Guo ZX (2003) Structural stability of mechanically alloyed (Mg+10Nb) and (MgH2+10Nb) powder mixtures. J Alloys Compd 349:217–223. https://doi.org/10.1016/S0925-8388(02)00920-9

    Article  Google Scholar 

  84. Shang CX, Bououdina M, Song Y, Guo ZX (2004) Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int J Hydrog Energy 29:73–80. https://doi.org/10.1016/S0360-3199(03)00045-4

    Article  Google Scholar 

  85. Rivoirard S, de Rango P, Fruchart D, Charbonnier J, Vempaire D (2003) Catalytic effect of additives on the hydrogen absorption properties of nano-crystalline MgH2(X) composites. J Alloys Compd 356–357:622–625. https://doi.org/10.1016/S0925-8388(03)00145-2

    Article  Google Scholar 

  86. Oelerich W, Klassen T, Bormann R (2001) Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd 315:237–242. https://doi.org/10.1016/S0925-8388(00)01284-6

    Article  Google Scholar 

  87. Aguey-Zinsou KF, Ares Fernandez JR, Klassen T, Bormann R (2007) Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrog Energy 32:2400–2407. https://doi.org/10.1016/j.ijhydene.2006.10.068

    Article  Google Scholar 

  88. Song MY, Bobet JL, Darriet B (2002) Improvement in hydrogen sorption properties of Mg by reactive mechanical grinding with Cr2O3, Al2O3 and CeO2. J Alloys Compd 340:256–262. https://doi.org/10.1016/S0925-8388(02)00019-1

    Article  Google Scholar 

  89. Floriano R, Leiva DR, Deledda S, Hauback BC, Botta WJ (2013) Cold rolling of MgH2 powders containing different additives. Int J Hydrog Energy 38:16193–16198. https://doi.org/10.1016/j.ijhydene.2013.10.029

    Article  Google Scholar 

  90. Huot J, Liang G, Boily S, Van Neste A, Schulz R (1999) Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloys Compd 293:495–500. https://doi.org/10.1016/S0925-8388(99)00474-0

    Article  Google Scholar 

  91. Huot J, Ravnsbæk DB, Zhang J, Cuevas F, Latroche M, Jensen TR (2013) Mechanochemical synthesis of hydrogen storage materials. Prog Mater Sci 58:30–75. https://doi.org/10.1016/j.pmatsci.2012.07.001

    Article  Google Scholar 

  92. Huot J, Skryabina NY, Fruchart D (2012) Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties. Metals (Basel) 2:329–343. https://doi.org/10.3390/met2030329

    Article  Google Scholar 

  93. Lima GF, Triques MRM, Kiminami CS, Botta WJ, Jorge AM (2014) Hydrogen storage properties of pure Mg after the combined processes of ECAP and cold-rolling. J Alloys Compd 586:S405–S408. https://doi.org/10.1016/j.jallcom.2013.03.106

    Article  Google Scholar 

  94. Jain P, Lang J, Skryabina NY, Fruchart D, Santos SF, Binder K, Klassen T, Huot J (2013) MgH2 as dopant for improved activation of commercial Mg ingot. J Alloys Compd 575:364–369. https://doi.org/10.1016/j.jallcom.2013.05.099

    Article  Google Scholar 

  95. Grill A, Horky J, Panigrahi A, Krexner G, Zehetbauer M (2015) Long-term hydrogen storage in Mg and ZK60 after severe plastic deformation. Int J Hydrog Energy 40:17144–17152. https://doi.org/10.1016/j.ijhydene.2015.05.145

    Article  Google Scholar 

  96. Leiva DR, Fruchart D, Bacia M, Girard G, Skryabina N, Villela ACS, Miraglia S, Santos DS, Botta WJ (2009) Mg alloy for hydrogen storage processed by SPD. Int J Mater Res 100:1739–1746. https://doi.org/10.3139/146.110225

    Article  Google Scholar 

  97. Kyoi D, Sato T, Rönnebro E, Kitamura N, Ueda A, Ito M, Katsuyama S, Hara S, Noréus D, Sakai T (2004) A new ternary magnesium-titanium hydride Mg7TiHx with hydrogen desorption properties better than both binary magnesium and titanium hydrides. J Alloys Compd 372:213–217. https://doi.org/10.1016/j.jallcom.2003.08.098

    Article  Google Scholar 

  98. Kyoi D, Sato T, Rönnebro E, Tsuji Y, Kitamura N, Ueda A, Ito M, Katsuyama S, Hara S, Noréus D, Sakai T (2004) A novel magnesium-vanadium hydride synthesized by a gigapascal-high-pressure technique. J Alloys Compd 375:253–258. https://doi.org/10.1016/j.jallcom.2003.11.150

    Article  Google Scholar 

  99. Sato T, Kyoi D, Rönnebro E, Kitamura N, Sakai T, Noréus D (2006) Structural investigations of two new ternary magnesium-niobium hydrides, Mg6.5NbH~14 and MgNb2H~4. J Alloys Compd 417:230–234. https://doi.org/10.1016/j.jallcom.2005.08.068

    Article  Google Scholar 

  100. Kyoi D, Kitamura N, Tanaka H, Ueda A, Tanase S, Sakai T (2007) Hydrogen desorption properties of FCC super-lattice hydride Mg7NbHx prepared by ultra-high pressure techniques. J Alloys Compd 428:268–273. https://doi.org/10.1016/j.jallcom.2006.02.073

    Article  Google Scholar 

  101. Kyoi D, Sakai T, Kitamura N, Ueda A, Tanase S (2008) Synthesis of FCC Mg-Ta hydrides using GPa hydrogen pressure method and their hydrogen-desorption properties. J Alloys Compd 463:306–310. https://doi.org/10.1016/j.jallcom.2007.09.003

    Article  Google Scholar 

  102. Vermeulen P, Graat PCJ, Wondergem HJ, Notten PHL (2008) Crystal structures of MgyTi100-y thin film alloys in the as-deposited and hydrogenated state. Int J Hydrog Energy 33:5646–5650. https://doi.org/10.1016/j.ijhydene.2008.07.014

    Article  Google Scholar 

  103. Song GL, Haddad D (2011) The topography of magnetron sputter-deposited Mg-Ti alloy thin films. Mater Chem Phys 125:548–552. https://doi.org/10.1016/j.matchemphys.2010.10.018

    Article  Google Scholar 

  104. Iliescu I, Skryabina N, Fruchart D, Bes A, Lacoste A (2017) Morphology and microstructure of Mg-Ti-H films deposited by microwave plasma-assisted co-sputtering. J Alloys Compd 708:489–499. https://doi.org/10.1016/j.jallcom.2017.03.044

    Article  Google Scholar 

  105. Zhou D-W, Peng P, Liu J-S, Chen L, Hu YJ (2006) First-principles study on structural stability of 3d transition metal alloying magnesium hydride. Trans Nonferrous Metals Soc China 16:23–32

    Article  Google Scholar 

  106. Siretskiy MY, Shelyapina MG, Fruchart D, Miraglia S, Skryabina NE (2009) Influence of a transition metal atom on the geometry and electronic structure of Mg and Mg-H clusters. J Alloys Compd 480:114–116. https://doi.org/10.1016/j.jallcom.2008.10.040

    Article  Google Scholar 

  107. Shelyapina MG, Siretskiy MY (2010) Influence of 3d metal atoms on the geometry, electronic structure, and stability of a Mg13H26 cluster. Phys Solid State 52:1992–1998. https://doi.org/10.1134/S1063783410090349

    Article  Google Scholar 

  108. Xiao XB, Zhang WB, Yu WY, Wang N, Tang BY (2009) Energetics and electronic properties of Mg7TMH16 (TM=Sc, Ti, V, Y, Zr, Nb): An ab initio study. Phys B Condens Matter 404:2234–2240. https://doi.org/10.1016/j.physb.2009.04.013

    Article  Google Scholar 

  109. Shelyapina MG, Fruchart D, Wolfers P (2010) Electronic structure and stability of new FCC magnesium hydrides Mg7MH16 and Mg6MH16 (M = Ti, V, Nb): An ab initio study. Int J Hydrog Energy 35:2025–2032. https://doi.org/10.1016/j.ijhydene.2009.12.171

    Article  Google Scholar 

  110. Novaković N, Grbović Novaković J, Matović L, Manasijević M, Radisavljević I, Paskaš Mamula B, Ivanović N (2010) Ab initio calculations of MgH2, MgH2:Ti and MgH2:Co compounds. Int J Hydrog Energy 35:598–608. https://doi.org/10.1016/j.ijhydene.2009.11.003

    Article  Google Scholar 

  111. Shelyapina MG, Fruchart D, Miraglia S, Girard G (2011) Electronic structure and stability of Mg6TiM (M = Mg, Al, Zn) and their hydrides. Phys Solid State 53:6–12. https://doi.org/10.1134/S1063783411010276

    Article  Google Scholar 

  112. Shelyapina MG, Pinyugzhanin VM, Skryabina NE, Hauback BC (2013) Electronic structure and stability of complex hydrides Mg2MHx (M = Fe, Co). Phys Solid State 55:12–20. https://doi.org/10.1134/S1063783412120293

    Article  Google Scholar 

  113. Shelyapina MG, Fruchart D (2011) Role of transition elements in stability of magnesium hydride: A review of theoretical studies. Solid State Phenom 170:227–231. https://doi.org/10.4028/www.scientific.net/SSP.170.227

    Article  Google Scholar 

  114. Pelletier JF, Huot J, Sutton M, Schulz R, Sandy AR, Lurio LB, Mochrie SGJ (2001) Hydrogen desorption mechanism in MgH2-Nb nanocomposites. Phys Rev B 63:52103-1–52103-4. https://doi.org/10.1103/PhysRevB.63.052103

    Article  Google Scholar 

  115. de Rango P, Chaise A, Charbonnier J, Fruchart D, Jehan M, Marty P, Miraglia S, Rivoirard S, Skryabina N (2007) Nanostructured magnesium hydride for pilot tank development. J Alloys Compd 446–447:52–57. https://doi.org/10.1016/j.jallcom.2007.01.108

    Article  Google Scholar 

  116. Ma T, Isobe S, Wang Y, Hashimoto N, Ohnuki S (2013) Nb-gateway for hydrogen desorption in Nb2O5 catalyzed MgH2 nanocomposite. J Phys Chem C 117:10302–10307

    Article  Google Scholar 

  117. Fritzsche H, Kalisvaart WP, Zahiri B, Flacau R, Mitlin D (2012) The catalytic effect of Fe and Cr on hydrogen and deuterium absorption in Mg thin films. Int J Hydrog Energy 37:3540–3547. https://doi.org/10.1016/j.ijhydene.2011.06.014

    Article  Google Scholar 

  118. Klyukin K, Shelyapina MG, Fruchart D (2011) Modelling of Mg/Ti and Mg/Nb Thin Films for Hydrogen Storage. Solid State Phenom 170:298–301. https://doi.org/10.4028/www.scientific.net/SSP.170.298

    Article  Google Scholar 

  119. Junkaew A, Ham B, Zhang X, Talapatra A, Arróyave R (2013) Stabilization of bcc Mg in thin films at ambient pressure: Experimental evidence and ab initio calculations. Mater Res Lett 1:161–167. https://doi.org/10.1080/21663831.2013.804218

    Article  Google Scholar 

  120. Kumar A, Beyerlein IJ, Wang J (2014) First-principles study of the structure of Mg/Nb multilayers. Appl Phys Lett 105:71602-1–71602-5. https://doi.org/10.1063/1.4893700

    Article  Google Scholar 

  121. Ham B, Junkaew A, Arroyave R, Chen J, Wang H, Wang P, Majewski J, Park J, Zhou HC, Arvapally RK, Kaipa U, Omary MA, Zhang XY, Ren Y, Zhang X (2013) Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature. Int J Hydrog Energy 38:8328–8341. https://doi.org/10.1016/j.ijhydene.2013.04.098

    Article  Google Scholar 

  122. Skryabina NY, Pinyugzhanin VM, Fruchart D (2013) Relationship between micro-/nano-structure and stress development in TM-doped Mg-based alloys absorbing hydrogen. Solid State Phenom 194:237–244. https://doi.org/10.4028/www.scientific.net/SSP.194.237

    Article  Google Scholar 

  123. Klyukin K, Shelyapina MG, Fruchart D (2013) Hydrogen induced phase transition in magnesium: An Ab initio study. J Alloys Compd 580:S10–S12. https://doi.org/10.1016/j.jallcom.2013.02.089

    Article  Google Scholar 

  124. Tao S, Notten P, van Santen R, Jansen a. (2009) Density functional theory studies of the hydrogenation properties of Mg and Ti. Phys Rev B 79:1–7. https://doi.org/10.1103/PhysRevB.79.144121

    Article  Google Scholar 

  125. Uchida HT, Kirchheim R, Pundt A (2011) Influence of hydrogen loading conditions on the blocking effect of nanocrystalline Mg films. Scr Mater 64:935–937. https://doi.org/10.1016/j.scriptamat.2011.01.036

    Article  Google Scholar 

  126. Tan X, Wang L, Holt CMB, Zahiri B, Eikerling MH, Mitlin D (2012) Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity. Phys Chem Chem Phys 14:10904–10909. https://doi.org/10.1039/c2cp42136d

    Article  Google Scholar 

  127. Nielsen TK, Besenbacher F, Jensen TR (2011) Nanoconfined hydrides for energy storage. Nanoscale 3:2086–2098. https://doi.org/10.1039/c0nr00725k

    Article  Google Scholar 

  128. Wagemans RWP, Van Lenthe JH, De Jongh PE, Van Dillen AJ, De Jong KP (2005) Hydrogen storage in magnesium clusters: Quantum chemical study. J Am Chem Soc 127:16675–16680. https://doi.org/10.1021/ja054569h

    Article  Google Scholar 

  129. Koch CC (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater 9:13–22. https://doi.org/10.1016/S0965-9773(97)00014-7

    Article  Google Scholar 

  130. De Jongh PE, Wagemans RWP, Eggenhuisen TM, Dauvillier BS, Radstake PB, Meeldijk JD, Geus JW, De Jong KP (2007) The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem Mater 19:6052–6057. https://doi.org/10.1021/cm702205v

    Article  Google Scholar 

  131. Aguey-Zinsou KF, Ares-Fernández JR (2008) Synthesis of colloidal magnesium: A near room temperature store for hydrogen. Chem Mater 20:376–378. https://doi.org/10.1021/cm702897f

    Article  Google Scholar 

  132. Zhang X, Yang R, Yang J, Zhao W, Zheng J, Tian W, Li X (2011) Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction. Int J Hydrog Energy 36:4967–4975. https://doi.org/10.1016/j.ijhydene.2010.12.052

    Article  Google Scholar 

  133. Anastasopol A, Pfeiffer TV, Middelkoop J, Lafont U, Canales-Perez RJ, Schmidt-Ott A, Mulder FM, Eijt SWH (2013) Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation. J Am Chem Soc 135:7891–7900. https://doi.org/10.1021/ja3123416

    Article  Google Scholar 

  134. Vajo JJ, Mertens F, Ahn CC, Bowman RC, Fultz B (2004) Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J Phys Chem B 108:13977–13983. https://doi.org/10.1021/jp040060h

    Article  Google Scholar 

  135. Pinkerton FE, Meyer MS, Meisner GP, Balogh MP, Vajo JJ (2007) Phase boundaries and reversibility of LiBH4/MgH2 hydrogen storage material. J Phys Chem C Lett 111:12881–12885

    Article  Google Scholar 

  136. Van Mal HH, Buschow KHJ, Miedema AR (1974) Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation. J Less-Common Met 35:65–76. https://doi.org/10.1016/0022-5088(74)90146-5

    Article  Google Scholar 

  137. Shao H, Xin G, Li X, Akiba E (2013) Thermodynamic property study of nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H systems by high pressure DSC method. J Nanomater 2013:1

    Article  Google Scholar 

  138. Johnson JR (1980) Reaction of hydrogen with the high temperature (C14) form of TiCr2. J Less Common Met 73:345–354. https://doi.org/10.1016/0022-5088(80)90328-8

    Article  Google Scholar 

  139. Zotov TA, Sivov RB, Movlaev EA, Mitrokhin SV, Verbetsky VN (2011) IMC hydrides with high hydrogen dissociation pressure. J Alloys Compd 509:S839–S843. https://doi.org/10.1016/J.JALLCOM.2011.01.198

    Article  Google Scholar 

  140. Burch R, Mason B (1979) Absorption of hydrogen by titanium–cobalt and titanium–nickel intermetallic alloys. Part 1. Experimental results. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 75:561–577

    Google Scholar 

  141. Mazzolai G, Coluzzi B, Biscarini A, Mazzolai FM, Tuissi A, Agresti F, Lo Russo S, Maddalena A, Palade P, Principi G (2008) Hydrogen-storage capacities and H diffusion in bcc TiVCr alloys. J Alloys Compd 466:133–139. https://doi.org/10.1016/j.jallcom.2007.11.040

    Article  Google Scholar 

  142. Switendick AC (1979) Band structure calculations for metal hydrogen systems. Z Phys Chem 117:89–112. https://doi.org/10.1524/zpch.1979.117.117.089

    Article  Google Scholar 

  143. Westlake DG (1983) A geometric model for the stoichiometry and interstitial site occupancy in hydrides (deuterides) of LaNi5, LaNi4Al and LaNi4Mn. J Less-Common Met 91:275–292. https://doi.org/10.1016/0022-5088(83)90322-3

    Article  Google Scholar 

  144. Vajeeston P, Vidya R, Ravindran P, Fjellvåg H, Kjekshus A, Skjeltorp A (2002) Electronic structure, phase stability, and chemical bonding in Th2Al and Th2AlH4. Phys Rev B 65:75101. https://doi.org/10.1103/PhysRevB.65.075101

    Article  Google Scholar 

  145. Vajeeston P, Ravindran P, Vidya R, Kjekshus A, Fjellvåg H, Yartys VA (2003) Short hydrogen-hydrogen separation in RNiInH1.333 (R = La, Ce, Nd). Phys Rev B 67:14101-1–1410111. https://doi.org/10.1103/PhysRevB.67.014101

    Article  Google Scholar 

  146. Yartys VA, Denys RV, Hauback BC, Fjellvåg H, Bulyk II, Riabov AB, Kalychak YM (2002) Short hydrogen–hydrogen separations in novel intermetallic hydrides, RE3Ni3In3D4 (RE=La, Ce and Nd). J Alloys Compd 330–332:132–140

    Article  Google Scholar 

  147. Pöttgen R, Chevalier B (2015) Cerium intermetallics with ZrNiAl-type structure - A review. Zeitschrift fur Naturforsch – Sect B J Chem Sci 70:289–304. https://doi.org/10.1515/znb-2015-0018

    Article  Google Scholar 

  148. Vajeeston P, Vidya R, Ravindran P, Fjellvåg H, Kjekshus A, Skjeltorp A (2002) Electronic structure, phase stability, and chemical bonding in Th2Al and Th2AlH4. Phys Rev B 65:75101. https://doi.org/10.1103/PhysRevB.65.075101

    Article  Google Scholar 

  149. Zolliker P, Yvon K, Jorgensen JD, Rotella FJ (1986) Structural studies of the hydrogen storage material Mg2NiH4. 2. Monoclinic low-temperature structure. Inorg Chem 25:3590–3593. https://doi.org/10.1021/ic00240a012

    Article  Google Scholar 

  150. García G, Abriata J, Sofo J (1999) Calculation of the electronic and structural properties of cubic Mg2NiH4. Phys Rev B 59:11746–11754. https://doi.org/10.1103/PhysRevB.59.11746

    Article  Google Scholar 

  151. Takahashi Y, Yukawa H, Morinaga M (1996) Alloying effects on the electronic structure of Mg2Ni intermetallic hydride. J Alloys Compd 242:98–107. https://doi.org/10.1016/0925-8388(96)02268-2

    Article  Google Scholar 

  152. Haussermann U, Blomqvist H, Noréus D (2002) Bonding and stability of the hydrogen storage material Mg2NiH4. Inorg Chem 41:3684–3692. https://doi.org/10.1021/ic0201046

    Article  Google Scholar 

  153. Zolliker P, Yvon K, Fischer P, Schefer J (1985) Dimagnesium cobalt(I) pentahydride, Mg2CoH5, containing square-pyramidal (CoH54-) anions. Inorg Chem 24:4177–4180

    Article  Google Scholar 

  154. Shao H, Xu H, Wang Y, Li X (2004) Synthesis and hydrogen storage behavior of Mg-Co-H system at nanometer scale. J Solid State Chem 177:3626–3632. https://doi.org/10.1016/j.jssc.2004.05.003

    Article  Google Scholar 

  155. Deledda S, Hauback BC (2009) The formation mechanism and structural characterization of the mixed transition-metal complex hydride Mg 2 (FeH 6)0.5 (CoH5)0.5 obtained by reactive milling. Nanotechnology 20:204010. https://doi.org/10.1088/0957-4484/20/20/204010

    Article  Google Scholar 

  156. Hosni B, Khaldi C, ElKedim O, Fenineche N, Lamloumi J (2017) Electrochemical properties of Ti2Ni hydrogen storage alloy. Int J Hydrog Energy 42:1420–1428. https://doi.org/10.1016/j.ijhydene.2016.04.032

    Article  Google Scholar 

  157. Balcerzak M, Jakubowicz J, Kachlicki T, Jurczyk M (2015) Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites. J Power Sources 280:435–445. https://doi.org/10.1016/j.jpowsour.2015.01.135

    Article  Google Scholar 

  158. Takeshita HT, Tanaka H, Kuriyama N, Sakai T, Uehara I, Haruta M (2000) Hydrogenation characteristics of ternary alloys containing Ti4Ni2X (X=O, N, C). J Alloys Compd 311:188–193. https://doi.org/10.1016/S0925-8388(00)01118-X

    Article  Google Scholar 

  159. Zavaliy I, Wojcik G, Mlynarek G, Saldan I, Yartys V, Kopczyk M (2001) Phase-structural characteristics of (Ti1-xZrx)4Ni2O0.3 alloys and their hydrogen gas and electrochemical absorption-desorption properties. J Alloys Compd 314:124–131. https://doi.org/10.1016/S0925-8388(00)01232-9

    Article  Google Scholar 

  160. Reilly JJ, Wiswall RH (1974) Formation and properties of iron titanium hydride. Inorg Chem 13:218–222. https://doi.org/10.1021/ic50131a042

    Article  Google Scholar 

  161. Burch R, Mason NB (1979) Absorption of hydrogen by titanium-cobalt and titanium-nickel intermetallic alloys. Part 1. Experimental results. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 75:561–577

    Google Scholar 

  162. Suda T, Ohkawa M, Sawada S, Watanabe S, Ohnuki S, Nagata S (2002) Effect of surface modification by ion implantation on hydrogenation property of TiFe alloy. Mater Trans 43:2703–2705. https://doi.org/10.2320/matertrans.43.2703

    Article  Google Scholar 

  163. Haraki T, Oishi K, Uchida H, Miyamoto Y, Abe M, Kokaji T, Uchida S (2008) Properties of hydrogen absorption by nano-structured FeTi alloys. Int J Mater Res 99:507–512. https://doi.org/10.3139/146.101669

    Article  Google Scholar 

  164. Schlapbach L (1988) Hydrogen in intermetallic compounds I. Springer, Berlin/Heidelberg/New York/London/Paris/Tokyo

    Book  Google Scholar 

  165. Reidinger F, Lynch JF, Reilly JJ (1982) An X-ray diffraction examination of the FeTi-H2 system. J Phys F Met Phys 12:L49–L55

    Article  Google Scholar 

  166. Thompson P, Reilly JJ, Hastings JM (1989) The application of the Rietveld method to a highly strained material with microtwins: TiFeD1.9. J Appl Crystallogr 22:256–260

    Article  Google Scholar 

  167. Thompson P, Pick MA, Reidinger F, Corliss LM, Hastings JM, Reilly JJ (1978) Neutron diffraction study of β iron titanium deuteride. J Phys F Met Phys 8:L75–L80

    Article  Google Scholar 

  168. Endo N, Saitoh H, Machida A, Katayama Y (2013) Formation of BCC TiFe hydride under high hydrogen pressure. Int J Hydrog Energy 38:6726–6729. https://doi.org/10.1016/j.ijhydene.2013.03.120

    Article  Google Scholar 

  169. Endo N, Saita I, Nakamura Y, Saitoh H, Machida A (2015) Hydrogenation of a TiFe-based alloy at high pressures and temperatures. Int J Hydrog Energy 40:3283–3287. https://doi.org/10.1016/j.ijhydene.2015.01.015

    Article  Google Scholar 

  170. Stepanov IA, Flomenblit YM, Zaymovskiy VA (1983) Influence of hydrogen on the temperature of the thermoelastic martensitic transformation in titanium nickelide. Phys Met Metallogr 55:180–182

    Google Scholar 

  171. Wade N, Adachi Y, Hosoi Y (1990) A role of hydrogen in shape memory effect of Ti-Ni alloys. Scr Metall Mater 24:1051–1055

    Article  Google Scholar 

  172. Cuevas F, Latroche M, Percheron-Guégan A (2005) Relationship between polymorphism and hydrogenation properties in Ti0.64Zr0.36Ni alloy. J Alloys Compd 404–406:545–549. https://doi.org/10.1016/j.jallcom.2005.02.072

    Article  Google Scholar 

  173. Young KH, Nei J (2013) The current status of hydrogen storage alloy development for electrochemical applications. Materials (Basel) 6:4574–4608. https://doi.org/10.3390/ma6104574

    Article  Google Scholar 

  174. Ribeiro RM, Lemus LF, Dos Santos DS (2013) Hydrogen absorption study of ti-based alloys performed by melt-spinning. Mater Res 16:679–682. https://doi.org/10.1590/S1516-14392013005000049

    Article  Google Scholar 

  175. Jacob I, Shaltiel D, Davidov D, Miloslavski I (1977) A phenomenological model for the hydrogen absorption capacity in pseudobinary laves phase compounds. Solid State Commun 23:669–672. https://doi.org/10.1016/0038-1098(77)90546-4

    Article  Google Scholar 

  176. Shaltiel D, Jacob I, Davidov D (1977) Hydrogen absorption and desorption properties of AB2 Laves-phase pseudobinary compounds. J Less-Common Met 53:117–131. https://doi.org/10.1016/0022-5088(77)90162-X

    Article  Google Scholar 

  177. Zhu JH, Liu CT, Pike LM, Liaw PK (2002) Enthalpies of formation of binary Laves phases. Intermetallics 10:579–595. https://doi.org/10.1016/S0966-9795(02)00030-4

    Article  Google Scholar 

  178. Yadav TP, Shahi RR, Srivastava ON (2012) Synthesis, characterization and hydrogen storage behaviour of AB2 ZrFe2, Zr(Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 type materials. Int J Hydrog Energy 37:3689–3696. https://doi.org/10.1016/j.ijhydene.2011.04.210

    Article  Google Scholar 

  179. Ivey BDG (1986) Storing hydrogen in AB2 Laves-type compounds. Z Phys Chem 147:829–847. https://doi.org/10.1524/zpch.1986.147.1_2.191

    Article  Google Scholar 

  180. Stein F, Palm M, Sauthoff G (2004) Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics 12:713–720. https://doi.org/10.1016/j.intermet.2004.02.010

    Article  Google Scholar 

  181. Thoma DJ, Perepezko JH (1995) A geometric analysis of solubility ranges in Laves phases. J Alloys Compd 224:330–341. https://doi.org/10.1016/0925-8388(95)01557-4

    Article  Google Scholar 

  182. van Vucht JHN, Kuijpers FA, Bruning HCAM (1970) Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res Rep 25:133–140

    Google Scholar 

  183. Boser O (1976) Hydrogen sorption in LaNi5. J Less-Common Met 46:91–99. https://doi.org/10.1016/0022-5088(76)90182-X

    Article  Google Scholar 

  184. Nahm K, Kim W, Hong S, Lee W (1992) The reaction kinetics of hydrogen storage in LaNi5. Int J Hydrog Energy 17:333–338. https://doi.org/10.1016/0360-3199(92)90169-W

    Article  Google Scholar 

  185. Sakai T, Matsuoka M, Iwakura C (1995) Rare earth intermetallics for metal-hydrogen batteries. In: Handbook on the Physics and Chemistry of Rare Earth, vol 21. Elsevier, Amsterdam, pp 133–178

    Google Scholar 

  186. Thompson P, Reilly JJ, Corliss LM, Hastings JM, Hempelmann R (1986) The crystal structure of LaNi5D7. J Phys F Met Phys 16:675–685. https://doi.org/10.1088/0305-4608/16/6/004

    Article  Google Scholar 

  187. Lartigue C, Le Bail A, Percheron-Guegan A (1987) A new study of the structure of LaNi5D6.7 using a modified Rietveld method for the refinement of neutron powder diffraction data. J Less Common Met 129:65–76. https://doi.org/10.1016/0022-5088(87)90034-8

    Article  Google Scholar 

  188. Adzic GD, Johnson JR, Reilly JJ, McBreen J, Mukerjee S, Sridhar Kumar MP, Zhang W, Srinivasan S (1995) Cerium Content and Cycle Life of Multicomponent AB5 Hydride Electrodes. J Electrochem Soc 142:3429–3433. https://doi.org/10.1149/1.2049999

    Article  Google Scholar 

  189. Černý R, Joubert JM, Latroche M, Percheron-Guégan A, Yvon K (2000) Anisotropic diffraction peak broadening and dislocation substructure in hydrogen-cycled LaNi5 and substitutional derivatives. J Appl Crystallogr 33:997–1005. https://doi.org/10.1107/S0021889800004556

    Article  Google Scholar 

  190. Joubert JM, Latroche M, Percheron-Guégan A, Yvon K (2002) Hydrogen cycling induced degradation in LaNi5-type materials. J Alloys Compd 330–332:208–214. https://doi.org/10.1016/S0925-8388(01)01640-1

    Article  Google Scholar 

  191. Kumar MPS, Zhang W, Petrov K, Rostami AA, Srinivasan S, Adzic GD, Johnson JR, Reilly JJ, Lim HS (1995) Effect of Ce, Co, and Sn substitution on gas phase and electrochemical hydriding/dehydriding properties of LaNi5. J Electrochem Soc 142:3424–3428

    Article  Google Scholar 

  192. Liang G, Huot J, Schulz R (2001) Hydrogen storage properties of the mechanically alloyed LaNi5-based materials. J Alloys Compd 320:133–139. https://doi.org/10.1016/S0925-8388(01)00929-X

    Article  Google Scholar 

  193. Kadir K, Sakai T, Uehara I (1997) Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. J Alloys Compd 257:115–121. https://doi.org/10.1016/S0925-8388(96)03132-5

    Article  Google Scholar 

  194. Kadir K, Kuriyama N, Sakai T, Uehara I, Eriksson L (1999) Structural investigation and hydrogen capacity of CaMg2Ni9: a new phase in the AB2C9 system isostructural with LaMg2Ni9. J Alloys Compd 284:145–154. https://doi.org/10.1016/S0925-8388(98)00965-7

    Article  Google Scholar 

  195. Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M (2000) Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. J Alloys Compd 311:5–7. https://doi.org/10.1016/S0925-8388(00)01119-1

    Article  Google Scholar 

  196. Orimo S, Fujii H (2001) Materials science of Mg-Ni-based new hydrides. Appl Phys A Mater Sci Process 72:167–186. https://doi.org/10.1007/s003390100771

    Article  Google Scholar 

  197. Akiba E, Hayakawa H, Kohno T (2006) Crystal structures of novel La-Mg-Ni hydrogen absorbing alloys. J Alloys Compd 408–412:280–283. https://doi.org/10.1016/j.jallcom.2005.04.180

    Article  Google Scholar 

  198. Ozaki T, Kanemoto M, Kakeya T, Kitano Y, Kuzuhara M, Watada M, Tanase S, Sakai T (2007) Stacking structures and electrode performances of rare earth-Mg-Ni-based alloys for advanced nickel-metal hydride battery. J Alloys Compd 446–447:620–624. https://doi.org/10.1016/j.jallcom.2007.03.059

    Article  Google Scholar 

  199. Rodewald UC, Chevalier B, Pöttgen R (2007) Rare earth-transition metal-magnesium compounds-An overview. J Solid State Chem 180:1720–1736. https://doi.org/10.1016/j.jssc.2007.03.007

    Article  Google Scholar 

  200. Denys RV, Yartys VA (2011) Effect of magnesium on the crystal structure and thermodynamics of the La3-xMgxNi9 hydrides. J Alloys Compd 509:540–548. https://doi.org/10.1016/j.jallcom.2010.11.205

    Article  Google Scholar 

  201. Liu W, Webb CJ, Gray EMA (2016) Review of hydrogen storage in AB3 alloys targeting stationary fuel cell applications. Int J Hydrog Energy 41:3485–3507. https://doi.org/10.1016/j.ijhydene.2015.12.054

    Article  Google Scholar 

  202. Liao B, Lei YQ, Chen LX, GL L, Pan HG, Wang QD (2005) The effect of Al substitution for Ni on the structure and electrochemical properties of AB3-type La2Mg(Ni1−xAlx)9 () alloys. J Alloys Compd 404–406:665–668. https://doi.org/10.1016/j.jallcom.2004.10.088

    Article  Google Scholar 

  203. Dong Z, Wu Y, Ma L, Shen X, Wang L (2010) Influences of low-Ti substitution for la and Mg on the electrochemical and kinetic characteristics of AB3-type hydrogen storage alloy electrodes. Sci China Technol Sci 53:242–247. https://doi.org/10.1007/s11431-009-0282-2

    Article  Google Scholar 

  204. Dong Z, Ma L, Shen X, Wang L, Wu Y, Wang L (2011) Cooperative effect of Co and Al on the microstructure and electrochemical properties of AB3-type hydrogen storage electrode alloys for advanced MH/Ni secondary battery. Int J Hydrog Energy 36:893–900. https://doi.org/10.1016/j.ijhydene.2010.08.056

    Article  Google Scholar 

  205. Liu Y, Cao Y, Huang L, Gao M, Pan H (2011) Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. J Alloys Compd 509:675–686. https://doi.org/10.1016/j.jallcom.2010.08.157

    Article  Google Scholar 

  206. Tsunokake S, Fuura T, Sakaguchi Y, Takahashi K (2012) Development of hybrid hydrogen storage tank for fuel cell vehicle. In: Kojima Y, Kuriyama N (eds) International Symposium on Metal – Hydrogen Systems. Fundamentals and Applications. Kyoto, p 451

    Google Scholar 

  207. Nakamura J, Fuura T, Tsunokake S (2014) Price reduction of V-based BCC-type alloy for hybrid tank system, loaded in FCV. In: Ota K, Umeda M, Yoshitake M, Ishida M (eds) State-of-the-art Fuel Cells and Hydrogen Technology in Japan. Fuel Cell Development Information Center, Tokyo

    Google Scholar 

  208. Iba H, Akiba E (1995) The relation between microstructure and hydrogen absorbing property in Laves phase-solid solution multiphase alloys. J Alloys Compd 231:508–512. https://doi.org/10.1016/0925-8388(95)01863-8

    Article  Google Scholar 

  209. Huot J, Akiba E, Iba H (1995) Crystal structure and phase composition of alloys Zr1−xTix(Mn1−yVy)2. J Alloys Compd 228:181–187. https://doi.org/10.1016/0925-8388(95)01884-0

    Article  Google Scholar 

  210. Iba H, Akiba E (1997) Hydrogen absorption and modulated structure in Ti–V–Mn alloys. J Alloys Compd 253–254:21–24. https://doi.org/10.1016/S0925-8388(96)03072-1

    Article  Google Scholar 

  211. Maeland AJ, Libowitz GG, Lynch JP (1984) Hydride formation rates of titanium-based B.C.C. solid solution alloys. J Less-Common Met 104:361–364. https://doi.org/10.1016/0022-5088(84)90420-X

    Article  Google Scholar 

  212. Libowitz GG, Maeland AJ (1988) Hydride formation by B.C.C. solid solution alloys. Mater Sci Forum 31:177–196. https://doi.org/10.4028/www.scientific.net/MSF.31.177

    Article  Google Scholar 

  213. Akiba E, Iba H (1998) Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6:461–470. https://doi.org/10.1016/S0966-9795(97)00088-5

    Article  Google Scholar 

  214. Pei P, Song XP, Liu J, Chen GL, Qin XB, Wang BY (2009) The effect of rapid solidification on the microstructure and hydrogen storage properties of V35Ti25Cr40 hydrogen storage alloy. Int J Hydrog Energy 34:8094–8100. https://doi.org/10.1016/j.ijhydene.2009.08.023

    Article  Google Scholar 

  215. Tousignant M, Huot J (2011) Replacement of vanadium by ferrovanadium in Ti-based BCC slloys for hydrogen storage. Solid State Phenom 170:144–149. https://doi.org/10.4028/www.scientific.net/SSP.170.144

    Article  Google Scholar 

  216. Bibienne T, Tousignant M, Bobet JL, Huot J (2015) Synthesis and hydrogen sorption properties of TiV(2-x)Mnx BCC alloys. J Alloys Compd 624:247–250. https://doi.org/10.1016/j.jallcom.2014.11.060

    Article  Google Scholar 

  217. Bavrina OO, Shelyapina MG (2017) Hydrogen solubility energy in fcc hydrides of disordered Ti-V-Cr alloys: a DFT study. Phys Solid State 59:1895–1899. https://doi.org/10.1134/S1063783417100043

    Article  Google Scholar 

  218. Nachev S, De Rango P, Skryabina N, Skachkov A, Aptukov V, Fruchart D, Marty P (2015) Mechanical behavior of highly reactive nanostructured MgH2. Int J Hydrog Energy 40:17065–17074. https://doi.org/10.1016/j.ijhydene.2015.05.022

    Article  Google Scholar 

  219. Klyukin K, Shelyapina MG, Fruchart D (2015) DFT calculations of hydrogen diffusion and phase transformations in magnesium. J Alloys Compd 644:371–377. https://doi.org/10.1016/j.jallcom.2015.05.039

    Article  Google Scholar 

  220. Vyvodtceva AV, Shelyapina MG, Privalov AF, Chernyshev YS, Fruchart D (2014) 1H NMR study of hydrogen self-diffusion in ternary Ti-V-Cr alloys. J Alloys Compd 614:364–367. https://doi.org/10.1016/j.jallcom.2014.06.023

    Article  Google Scholar 

  221. Miraglia S, De Rango P, Rivoirard S, Fruchart D, Charbonnier J, Skryabina N (2012) Hydrogen sorption properties of compounds based on BCC Ti1-xV1-yCr1+x+y alloys. J Alloys Compd 536:1–6. https://doi.org/10.1016/j.jallcom.2012.05.008

    Article  Google Scholar 

  222. Iba H, Akiba E (2000) Hydrogen-absorbing alloy and process for preparing the same. U.S. Patent 6,153,032. https://www.google.com/patents/US6153032

  223. Lynch JF, Johnson JR, Reilly JJ (1979) The dilute solution of hydrogen and deuterium in (C-15) TiCr1.8. Zeitschrift Phys Chem Neue Folge, Bd 117:229–243. https://doi.org/10.1524/zpch.1979.117.117.229

    Article  Google Scholar 

  224. Miraglia S, Fruchart D, Skryabina N, Shelyapina M, Ouladiaf B, Hlil EK, de Rango P, Charbonnier J (2007) Hydrogen-induced structural transformation in TiV0.8Cr1.2 studied by in situ neutron diffraction. J Alloys Compd 442:49–54. https://doi.org/10.1016/j.jallcom.2006.10.168

    Article  Google Scholar 

  225. Shelyapina MG, Kasperovich VS, Skryabina NE, Fruchart D (2007) Ab initio calculations of the stability of disordered Ti-V-Cr solid solutions and their hydrides. Phys Solid State 49:399–402. https://doi.org/10.1134/S1063783407030018

    Article  Google Scholar 

  226. Taizhong H, Zhu W, Baojia X, Tiesheng H (2005) Influence of V content on structure and hydrogen desorption performance of TiCrV-based hydrogen storage alloys. Mater Chem Phys 93:544–547. https://doi.org/10.1016/j.matchemphys.2005.04.004

    Article  Google Scholar 

  227. Planté D, Andrieux J, Laversenne L, Miraglia S (2015) In situ X-Ray diffraction study of hydrogen sorption in V-rich Ti-V-Cr bcc solid solutions. J Alloys Compd 648:79–85. https://doi.org/10.1016/j.jallcom.2015.05.254

    Article  Google Scholar 

  228. Okada M, Kuriiwa T, Tamura T, Takamura H, Kamegawa A (2002) Ti-V-Cr B.C.C. alloys with high protium content. J Alloys Compd 330–332:511–516. https://doi.org/10.1016/S0925-8388(01)01647-4

    Article  Google Scholar 

  229. Planté D, Raufast C, Miraglia S, De Rango P, Fruchart D (2013) Improvement of hydrogen sorption properties of compounds based on Vanadium “BCC” alloys by mean of intergranular phase development. J Alloys Compd 580:192–196. https://doi.org/10.1016/j.jallcom.2013.03.080

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina G. Shelyapina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shelyapina, M.G. (2019). Metal Hydrides for Energy Storage. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_119

Download citation

Publish with us

Policies and ethics