Skip to main content

Toll-Like Receptor Adaptor Protein Family Members

  • Reference work entry
  • First Online:

Synonyms

Mal: Myd88-adapter-like; TLR4AP; TIRAP; Toll-interleukin 1 receptor (TIR) domain-containing adapter protein; Toll-like receptor 4 adapter protein; Wyatt

MyD88: Myeloid differentiation primary response gene 88

SARM: MyD88-5; Sterile alpha and TIR motif-containing protein

TRIF: TICAM-1; TIR-domain-containing adapter molecule 1; TIR-domain-containing adapter protein inducing IFN-beta; Toll-interleukin-1 receptor domain-containing adapter protein inducing interferon beta

TRAM: TICAM-2; TIRP; TIR-domain-containing adapter molecule 2; TRIF-related adapter molecule; Toll-like receptor adaptor protein 3; Toll/interleukin-1 receptor domain-containing protein

Historical Background

Toll-like receptors (TLRs) play a critical role in innate immunity by providing a frontline defense mechanism against invading pathogens such as bacteria, fungi and viruses. They accomplish this by recognising evolutionarily conserved pathogen-associated molecular patterns (PAMPs) which are unique to pathogens...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol. 2004;4:499–511.

    Article  PubMed  CAS  Google Scholar 

  • Bin LH, Xu LG, Shu HB. TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J Biol Chem. 2003;278:24526–32.

    Article  PubMed  CAS  Google Scholar 

  • Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol. 2006;7:1074–81.

    Article  PubMed  CAS  Google Scholar 

  • Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H, et al. IRAK1 and IRAK4 promote phosphorylation, ubiquitination, and degradation of MyD88 adaptor-like (Mal). J Biol Chem. 2010;285:18276–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, et al. Mal (MyD88-adapter-like) is required for toll-like receptor-4 signal transduction. Nature. 2001;413:78–83.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med. 2003;198:1043–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauzzi C, Del Corno M, Gessani S. Dissecting TLR3 signaling in dendritic cells. Immunobiology. 2010;215:713–23.

    Article  PubMed  CAS  Google Scholar 

  • Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the toll signaling pathway. Nat Immunol. 2001;2:835–41.

    Article  PubMed  CAS  Google Scholar 

  • Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signaling specificity for toll-like receptors. Nature. 2002;420:329–33.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins KA, Mansell A. TIR-containing adaptors in toll-like receptor signaling. Cytokine. 2010;49:237–44.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AC, Li X, Pearlman E. MyD88 functions as a negative regulator of TLR3/TRIF-induced corneal inflammation by inhibiting activation of c-Jun N-terminal kinase. J Biol Chem. 2008;283:3988–96.

    Article  PubMed  CAS  Google Scholar 

  • Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling. Cell. 2006;125:943–55.

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13:816–25.

    Article  PubMed  CAS  Google Scholar 

  • Kenny EF, Talbot S, Gong M, Golenbock DT, Bryant CE, O’Neill LA. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J Immunol. 2009;183:3642–51.

    Article  PubMed  CAS  Google Scholar 

  • Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J. 2009;420:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Lysakova-Devine T, Keogh B, Harrington B, Nagpal K, Halle A, Golenbock DT, et al. Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. J Immunol. 2010;185:4261–71.

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2:253–8.

    Article  PubMed  CAS  Google Scholar 

  • Miggin SM, O’Neill LA. New insights into the regulation of TLR signaling. J Leukoc Biol. 2006;80:220–6.

    Article  PubMed  CAS  Google Scholar 

  • Miggin SM, Pålsson-McDermott E, Dunne A, Jefferies C, Pinteaux E, Banahan K, et al. NF-kB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proc Natl Acad Sci USA. 2007;104:3372–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moynagh PN. The Pellino family: IRAK E3 ligases with emerging roles in innate immune signaling. Trends Immunol. 2008;30:33–42.

    Article  PubMed  CAS  Google Scholar 

  • Nunez Miguel R, Wong J, Westoll JF, Brooks HJ, O’Neill LA, Gay NJ, et al. A dimer of the toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signaling adaptor proteins. PLoS One. 2007;2:e788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signaling. Nat Rev Immunol. 2007;7:353–64.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61(2):177–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palsson-McDermott EM, Doyle SL, McGettrick AF, Hardy M, Husebye H, Banahan K, et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat Immunol. 2009;10:579–86.

    Article  PubMed  CAS  Google Scholar 

  • Rhee SH. Basic and translational understandings of microbial recognition by toll-like receptors in the intestine. Neurogastroenterol Motil. 2011;17:28–34.

    Article  Google Scholar 

  • Sasai M, Tatematsu M, Oshiumi H, Funami K, Matsumoto M, Hatakeyama S, et al. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the toll-like receptor 3/4 pathway. Mol Immunol. 2010;47:1283–91.

    Article  PubMed  CAS  Google Scholar 

  • Siednienko J, Halle A, Nagpal K, Golenbock DT, Miggin SM. TLR3-mediated IFN-beta gene induction is negatively regulated by the TLR adaptor MyD88 adaptor-like. Eur J Immunol. 2010;40:3150–60.

    Article  PubMed  CAS  Google Scholar 

  • Siednienko J, Gajanayake T, Fitzgerald KA, Moynagh P, Miggin SM. Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-(beta) and RANTES production. J Immunol. 2011;186:2514–22.

    Article  PubMed  CAS  Google Scholar 

  • Tatematsu M, Ishii A, Oshiumi H, Horiuchi M, Inagaki F, Seya T, et al. A molecular mechanism for toll-IL-1 receptor domain-containing adaptor molecule-1-mediated IRF-3 activation. J Biol Chem. 2010;285:20128–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulrichts P, Bovijn C, Lievens S, Beyaert R, Tavernier J, Peelman F. Caspase-1 targets the TLR adaptor Mal at a crucial TIR-domain interaction site. J Cell Sci. 2010;123:256–65.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, et al. Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature. 2002;420:324–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Kim T, Bao M, Facchinetti V, Jung SY, Ghaffari AA, et al. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity. 2011;34:866–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinéad M. Miggin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shevlin, E., Miggin, S.M. (2018). Toll-Like Receptor Adaptor Protein Family Members. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_608

Download citation

Publish with us

Policies and ethics