Skip to main content

G-Protein-Coupled Receptor Kinase 1 (GRK1)

  • Reference work entry
  • First Online:
  • 68 Accesses

Synonyms

G-protein-coupled receptor kinase 1; GRK1; Rhodopsin kinase; RhoK; RK

Historical Background

The activity of G-protein-coupled receptor kinase 1 (GRK1) was first observed in the light-dependent phosphorylation of rhodopsin in rod outer segment (ROS). As GRK1 was unstable during biochemical manipulations, isolating it in sufficient quantity and quality was proven to be difficult over a period of 30 years (Maeda et al. 2003). The GRK1 gene was cloned in the early 1990s (Lorenz et al. 1991), and many findings regarding its roles in phototransduction recovery, light and dark adaptation, and stationary night blindness of human Oguchi disease took place in the following decade (Chen et al. 1999; Lyubarsky et al. 2000; Khani et al. 1998; Cideciyan et al. 1998). GRK1 is posttranslationally modified by isoprenylation and phosphorylation, and its catalytic activity can be regulated by other proteins such as recoverin (Chen et al. 1995) and protein kinase A (Horner et al. 2005). It is...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ames JB, Levay K, et al. Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin. J Biol Chem. 2006;281(48):37237–45.

    Article  PubMed  CAS  Google Scholar 

  • Azam M, Collin RW, et al. A novel mutation in GRK1 causes Oguchi disease in a consanguineous Pakistani family. Mol Vis. 2009;15:1788–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boguth CA, Singh P, et al. Molecular basis for activation of G protein-coupled receptor kinases. EMBO J. 2009;29(19):3249–59.

    Article  CAS  Google Scholar 

  • Carr RE, Gouras P. Oguchi’s disease. Arch Ophthalmol. 1965;73:646–56.

    Article  PubMed  CAS  Google Scholar 

  • Chen CK. The vertebrate phototransduction cascade: amplification and termination mechanisms. Rev Physiol Biochem Pharmacol. 2005;154:101–21.

    PubMed  CAS  Google Scholar 

  • Chen CK, Inglese J, et al. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem. 1995;270(30):18060–6.

    Article  PubMed  CAS  Google Scholar 

  • Chen CK, Burns ME, et al. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci USA. 1999;96(7):3718–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen CK, Zhang K, et al. Characterization of human GRK7 as a potential cone opsin kinase. Mol Vis. 2001;7:305–13.

    PubMed  CAS  Google Scholar 

  • Chen CK, Woodruff ML, et al. Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J Neurosci. 2010;30(4):1213–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi S, Hao W, et al. Gene expression profiles of light-induced apoptosis in arrestin/rhodopsin kinase-deficient mouse retinas. Proc Natl Acad Sci USA. 2001;98(23):13096–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cideciyan AV, Zhao X, et al. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc Natl Acad Sci USA. 1998;95(1):328–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dorn 2nd GW. GRK mythology: G-protein receptor kinases in cardiovascular disease. J Mol Med. 2009;87(5):455–63.

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Sakurai K, et al. Deletion of GRK1 causes retina degeneration through a transducin-independent mechanism. J Neurosci. 2010;30(7):2496–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao W, Wenzel A, et al. Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat Genet. 2002;32(2):254–60.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H, Kishi S. Shortening of the rod outer segment in Oguchi disease. Graefes Arch Clin Exp Ophthalmol. 2009 Nov;247(11):1561–3.

    Article  PubMed  Google Scholar 

  • Hayashi T, Gekka T, et al. A novel homozygous GRK1 mutation (P391H) in 2 siblings with Oguchi disease with markedly reduced cone responses. Ophthalmology. 2007;114(1):134–41.

    Article  PubMed  Google Scholar 

  • Higgins MK, Oprian DD, et al. Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase. J Biol Chem. 2006;281(28):19426–32.

    Article  PubMed  CAS  Google Scholar 

  • Horner TJ, Osawa S, et al. Phosphorylation of GRK1 and GRK7 by cAMP-dependent protein kinase attenuates their enzymatic activities. J Biol Chem. 2005;280(31):28241–50.

    Article  PubMed  CAS  Google Scholar 

  • Inglese J, Glickman JF, et al. Isoprenylation of a protein kinase. Requirement of farnesylation/alpha-carboxyl methylation for full enzymatic activity of rhodopsin kinase. J Biol Chem. 1992;267(3):1422–5.

    PubMed  CAS  Google Scholar 

  • Khani SC, Nielsen L, et al. Biochemical evidence for pathogenicity of rhodopsin kinase mutations correlated with the oguchi form of congenital stationary night blindness. Proc Natl Acad Sci USA. 1998;95(6):2824–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnan J, Lee G, et al. Characterization of phototransduction gene knockouts revealed important signaling networks in the light-induced retinal degeneration. J Biomed Biotechnol. 2008;2008:327468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krispel CM, Chen D, et al. RGS expression rate-limits recovery of rod photoresponses. Neuron. 2006;51(4):409–16.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz W, Inglese J, et al. The receptor kinase family: primary structure of rhodopsin kinase reveals similarities to the beta-adrenergic receptor kinase. Proc Natl Acad Sci USA. 1991;88(19):8715–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyubarsky AL, Chen C, et al. Mice lacking G-protein receptor kinase 1 have profoundly slowed recovery of cone-driven retinal responses. J Neurosci. 2000;20(6):2209–17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maeda T, Imanishi Y, et al. Rhodopsin phosphorylation: 30 years later. Prog Retin Eye Res. 2003;22(4):417–34.

    Article  PubMed  CAS  Google Scholar 

  • Makino CL, Dodd RL, et al. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. J Gen Physiol. 2004;123(6):729–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McTaggart SJ. Isoprenylated proteins. Cell Mol Life Sci. 2006;63(3):255–67.

    Article  PubMed  CAS  Google Scholar 

  • Ribas C, Penela P, et al. The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta. 2007;1768(4):913–22.

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Wang B, et al. Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J Biol Chem. 2008;283(20):14053–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strissel KJ, Lishko PV, et al. Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. J Biol Chem. 2005;280(32):29250–5.

    Article  PubMed  CAS  Google Scholar 

  • Weiss ER, Raman D, et al. The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas. Mol Vis. 1998;4:27.

    PubMed  CAS  Google Scholar 

  • Weiss ER, Ducceschi MH, et al. Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction. J Neurosci. 2001;21(23):9175–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whitcomb T, Sakurai K, et al. Effect of g protein-coupled receptor kinase 1 (Grk1) overexpression on rod photoreceptor cell viability. Invest Ophthalmol Vis Sci. 2010;51(3):1728–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Sippel KC, et al. Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet. 1997;15(2):175–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Zulfiqar F, et al. A variant form of Oguchi disease mapped to 13q34 associated with partial deletion of GRK1 gene. Mol Vis. 2005;11:977–85.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Kang (Jason) Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, F.S., Chen, CK.(. (2018). G-Protein-Coupled Receptor Kinase 1 (GRK1). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_589

Download citation

Publish with us

Policies and ethics