Skip to main content

p53

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 127 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aubrey BJ, Strasser A, Kelly GL. Tumor-suppressor functions of the TP53 pathway. Cold Spring Harbor Perspect Med. 2016;6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bieging K, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14:359–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Candi E, Agostini M, Melino G, Bernassola F. How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat. 2014;35:702–14.

    Article  PubMed  CAS  Google Scholar 

  • Donehower LA, Lozano G. 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer. 2009;9:831–41.

    Article  PubMed  CAS  Google Scholar 

  • Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24:2899–908.

    Article  PubMed  CAS  Google Scholar 

  • Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 2016;85:375–404.

    Article  PubMed  CAS  Google Scholar 

  • Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6.

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ. The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology. 2009;384:285–93.

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu WJ, Amatruda JF, Abrams JM. p53 ancestry: gazing through an evolutionary lens. Nat Rev Cancer. 2009;9:758–62.

    Article  PubMed  CAS  Google Scholar 

  • Meek DW, Anderson CW. Posttranslational modification of p53: cooperative integrators of function. In: Levine AJ, Lane D, editors. Cold spring harbor perspectives in biology, volume on the p53 family. New York: Cold Spring Harbor Laboratory Press; 2010. p. 81–96.

    Google Scholar 

  • Meek DW, Hupp TR. The regulation of MDM2 by multisite phosphorylation – opportunities for molecular-based intervention to target tumors? Semin Cancer Biol. 2010;20:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Menendez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nat Rev Cancer. 2009;9:724–37.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TA, Menendez D, Resnick MA, Anderson CW. Mutant TP53 posttranslational modifications: challenges and opportunities. Hum Mutat. 2014;35:738–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. In: Levine AJ, Lane D, editors. Cold spring harbor perspectives in biology, volume on the p53 family. New York: Cold Spring Harbor Laboratory Press; 2010. p. 123–40.

    Google Scholar 

  • Perry ME. The regulation of the p53-mediated stress response by MDM2 and MDM4. In: Levine AJ, Lane D, editors. Cold spring harbor perspectives in biology, volume on the p53 family. New York: Cold Spring Harbor Laboratory Press; 2010. p. 97–108.

    Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9:402–12.

    Article  PubMed  CAS  Google Scholar 

  • Shetzer Y, Molchadsky, A, Rotter V. Oncogenic mutant p53 gain of function nourishes the vicious cycle of tumor development and cancer stem-cell function. Cold Spring Harb Perspect Med 2016 doi:10.1101/cshperspect.a026203.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta. 2009;1787:414–20.

    Article  PubMed  CAS  Google Scholar 

  • Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137:413–31.

    Article  PubMed  CAS  Google Scholar 

  • Whibley C, Pharoah D, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009;9:95–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl W. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Menendez, D., Nguyen, TA., Resnick, M.A., Anderson, C.W. (2018). p53. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_57

Download citation

Publish with us

Policies and ethics