Skip to main content

RPN8

  • Reference work entry
  • First Online:
  • 44 Accesses

Synonyms

PSMD7; S12

Background

The gene PSMD7 encodes the protein RPN8, also known as S12. RPN8, the human homologue of Mov-34, is a non-ATPase component of the 19S regulatory complex (Dubiel et al. 1995). Two 19S regulatory complexes bind to each end of the 20S proteasome to form the 26S proteasome.

The Proteasome

The proteasome plays an important role in the cell, but its mechanism of action is not well understood. Although the proteasome was first isolated in 1979 (DeMartino and Goldberg 1979), the essential role the proteasome plays within a cell was not realized until 1990 (Fujiwara et al. 1990). The proteasome is the main component in the intracellular protein degradation pathway. This pathway was once thought to be a relatively unimportant part of the cell, but is now recognized to play an important role in regulating the lifetime of cellular proteins (Spataro et al. 1998).

Degradation is an important process within the cell (Glickman and Ciechanover 2002). The ultimate state...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akopian TN, Kisselev AF, Goldberg AL. Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilium. J Biol Chem. 1997;272(3):1791–8.

    Article  PubMed  CAS  Google Scholar 

  • Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R. The proteasome. Annu Rev Biophys Biomol Struct. 1999;28:295–317.

    Article  PubMed  CAS  Google Scholar 

  • Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol. 1999;1(4):221–6.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40(2):427–46.

    Article  PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.

    Article  PubMed  CAS  Google Scholar 

  • DeMartino GN, Goldberg AL. Identification and partial purification of an ATP-stimulated alkaline protease in rat liver. J Biol Chem. 1979;254(10):3712–5.

    PubMed  CAS  Google Scholar 

  • Dubiel W, Ferrell K, Dumdey R, Standera S, Prehn S, Rechsteiner M. Molecular cloning and expression of subunit 12: a non-MCP and non-ATPase subunit of the 26 S protease. FEBS Lett. 1995;363(1–2):97–100.

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 2001;20(24):7096–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujiwara T, Tanaka K, Orino E, Yoshimura T, Kumatori A, Tamura T, Chung CH, Nakai T, Yamaguchi K, Shin S. Proteasomes are essential for yeast proliferation. cDNA cloning and gene disruption of two major subunits. J Biol Chem. 1990;265(27):16604–13.

    PubMed  CAS  Google Scholar 

  • Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y. Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2010;396(4):1048–53.

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82(2):373–428.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol. 1995;7:215–23.

    Article  PubMed  CAS  Google Scholar 

  • Isono E, Saeki Y, Yokosawa H, Toh-e A. Rpn7 is required for the structural integrity of the 26 s proteasome of Saccharomyces cerevisiae. J Biol Chem. 2004;279(26):27168–76.

    Article  PubMed  CAS  Google Scholar 

  • Kisselev AF, Akopian TN, Goldberg AL. Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes. J Biol Chem. 1998;273(4):1982–9.

    Article  PubMed  CAS  Google Scholar 

  • Mason GG, Murray RZ, Pappin D, Rivett AJ. Phosphorylation of ATPase subunits of the 26S proteasome. FEBS Lett. 1998;430(3):269–74.

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum AK, Dick TP, Keilholz W, Schirle M, Stevanovic S, Dietz K, Heinemeyer W, Groll M, Wolf DH, Huber R, Rammensee H-G, Schild H. Cleavage motifs of the yeast 20s proteasome β subunits deduced from digests of enolase 1. Proc Natl Acad Sci U S A. 1998;95:12504–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orlowski M, Wilk S. Catlaytic activities of the 20 s proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys. 2000;383(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  • Peters B, Janek K, Kuckelkorn U, Holzhutter H-G. Assessment of proteasomal cleavage probabilities from kinetic analysis of time-dependent product formation. J Mol Biol. 2002;318:847–62.

    Article  PubMed  CAS  Google Scholar 

  • Realini C, Rogers SW, Rechsteiner M. KEKE motifs. Proposed roles in protein-protein association and presentation of peptides by MHC class I receptors. FEBS Lett. 1994;348(2):109–13.

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006;443(7113):780–6.

    Article  PubMed  CAS  Google Scholar 

  • Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A. 2001;98(9):5134–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanches M, Alves BSC, Zanchin NIT, Guimares BG. The crystal structure of the human mov34 mpn domain reveals a metal-free dimer. J Mol Biol. 2007;370(5):846–55.

    Article  PubMed  CAS  Google Scholar 

  • Seeger M, Kraft R, Ferrell K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M, Dubiel WA. novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J. 1998;12(6):469–78.

    Article  PubMed  CAS  Google Scholar 

  • Spataro V, Norbury C, Harris AL. The ubiquitin-proteasome pathway in cancer. Br J Cancer. 1998;77(3):448–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein RL, Melandri F, Dick L. Kinetic characterization of the chymotryptic activity of the 20S proteasome. Biochemistry. 1996;35:3899–908.

    Article  PubMed  CAS  Google Scholar 

  • Tanka K. Role of proteasomes modified by interferon-gamma in antigen processing. J Leukoc Biol. 1994;56(5):571–5.

    Article  Google Scholar 

  • Thompson HGR, Harris JW, Lin L, Brody JP. Identification of the protein ZIBRA, its genomic organization, regulation and expression in breast cancer cells. Exp Cell Res. 2004;295(2):448–59.

    Article  PubMed  CAS  Google Scholar 

  • Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T. The structure of the mammalian 20S proteasome at 2.75Å resolution. Structure. 2002;10:609–18.

    Article  PubMed  CAS  Google Scholar 

  • Van den Eynde BJ, Morel S. Differential processing of class-i-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol. 2001;13(2):147–53.

    Article  PubMed  Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  Google Scholar 

  • Voorhees PM, Orlowski RZ. The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol. 2006;46:189–213.

    Article  PubMed  CAS  Google Scholar 

  • Walz J, Erdmann A, Kania M, Typke D, Koster AJ, Baumeister W. 26s proteasome structure revealed by three dimensional electron microscopy. J Struct Biol. 1998;121:19–29.

    Article  PubMed  CAS  Google Scholar 

  • Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol. 2001;2(3):169–78.

    Article  PubMed  CAS  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ. Dynamic association of proteasomal machinery with the centrosome. J Cell Biol. 1999;145(3):481–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Brody .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brody, J.P. (2018). RPN8. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_192

Download citation

Publish with us

Policies and ethics