Skip to main content

Protein Kinase C (Prkc)

  • Reference work entry
  • First Online:
  • 220 Accesses

Historical Background

Protein kinase C was discovered in the late 1970s by Yasutomi Nishizuka and his team at Kobe University, Japan. They had originally purified a kinase that required only Mg2+ for activity, so they named it protein kinase M (PKM). It soon became apparent to the group that PKM was a proteolytic product of a larger enzyme whose kinase activity needed to be unmasked by cofactors. They named the parent enzyme protein kinase C because a Ca2+-dependent protease cleaved it to release the unregulated kinase moiety they had initially purified. The subsequent identification of diacylglycerol as the key cofactor provided an explanation for how lipid hydrolysis, discovered 25 years earlier to be triggered by stimuli such as acetylcholine, couples to intracellular signaling pathways. But the discovery that shot PKC into the limelight was its specific binding to, and activation by, tumor-promoting phorbol esters, a discovery that was facilitated by the synthesis of relatively...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfonso SI, Callender JA, Hooli B, Antal CE, Mullin K, Sherman MA, Lesne SE, Leitges M, Newton AC, Tanzi RE, et al. Gain-of-function mutations in protein kinase Calpha (PKCalpha) may promote synaptic defects in Alzheimer’s disease. Sci Signal. 2016;9:ra 47.

    Article  CAS  Google Scholar 

  • Antal CE, Callender JA, Kornov AP, Taylor SS, Newton AC. Intramolecular C2 domain-mediated autoinhibition of protein kinase CbII. Cell Rep. 2015a. doi:10.1016/j.celrep.2015.07.039.

    Article  PubMed  PubMed Central  Google Scholar 

  • Antal CE, Hudson AM, Kang E, Zanca C, Wirth C, Stephenson NL, Trotter EW, Gallegos LL, Miller CJ, Furnari FB, et al. Cancer-associated protein kinase C mutations reveal kinase’s role as tumor suppressor. Cell. 2015b;160:489–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 2008;27:1932–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao T, Brognard J, Newton AC. The phosphatase PHLPP controls the cellular levels of protein kinase C. J Biol Chem. 2008;283:6300–11.

    Article  CAS  PubMed  Google Scholar 

  • Griner EM, Kazanietz MG. Protein kinase C and other diacylglycerol effectors in cancer. Natl Rev Cancer. 2007;7:281–94.

    Article  CAS  Google Scholar 

  • Hansra G, Garcia-Paramio P, Prevostel C, Whelan RD, Bornancin F, Parker PJ. Multisite dephosphorylation and desensitization of conventional protein kinase C isotypes [In Process Citation]. Biochem J. 1999;342:337–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015;163:712–23.

    Article  CAS  PubMed  Google Scholar 

  • Hoshi N, Langeberg LK, Gould CM, Newton AC, Scott JD. Interaction with AKAP79 modifies the cellular pharmacology of PKC. Mol Cell. 2010;37:541–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Humphries MJ, Ohm AM, Schaack J, Adwan TS, Reyland ME. Tyrosine phosphorylation regulates nuclear translocation of PKCdelta. Oncogene. 2008;27:3045–53.

    Article  CAS  PubMed  Google Scholar 

  • Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008;27:1919–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leonard TA, Rozycki B, Saidi LF, Hummer G, Hurley JH. Crystal structure and allosteric activation of protein kinase C betaII. Cell. 2011;144:55–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newton AC. Diacylglycerol’s affair with protein kinase C turns 25. Trends Pharmacol Sci. 2004;25:175–7.

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992;258:607–14.

    Article  CAS  PubMed  Google Scholar 

  • Rosse C, Linch M, Kermorgant S, Cameron AJ, Boeckeler K, Parker PJ. PKC and the control of localized signal dynamics. Natl Rev Mol Cell Biol. 2010;11:103–12.

    Article  CAS  Google Scholar 

  • Steinberg SF. Distinctive activation mechanisms and functions for protein kinase Cdelta. Biochem J. 2004;384:449–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stempka L, Girod A, Müller H-J, Rincke G, Marks F, Gschwendt M, Bossemeyer D. Phosphorylation of protein kinase Cd (PKCd) at threonine 505 is not a prerequisite for enzymatic activity. J Biol Chem. 1997;272:6805–11.

    Article  CAS  PubMed  Google Scholar 

  • Tobias IS, Kaulich M, Kim PK, Simon N, Jacinto E, Dowdy SF, King CC, Newton AC. Protein kinase Czeta exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation. Biochem J. 2016;473:509–23.

    Article  CAS  PubMed  Google Scholar 

  • Tobias IS, Newton AC. Protein scaffolds control localized protein kinase C zeta activity. J Biol Chem. 2016;291:13809–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trujillo JI, Kiefer JR, Huang W, Thorarensen A, Xing L, Caspers NL, Day JE, Mathis KJ, Kretzmer KK, Reitz BA, et al. 2-(6-Phenyl-1H-indazol-3-yl)-1H-benzo[d]imidazoles: design and synthesis of a potent and isoform selective PKC-zeta inhibitor. Bioorg Med Chem Lett. 2009;19:908–11.

    Article  CAS  PubMed  Google Scholar 

  • Verbeek DS, Goedhart J, Bruinsma L, Sinke RJ, Reits EA. PKC gamma mutations in spinocerebellar ataxia type 14 affect C1 domain accessibility and kinase activity leading to aberrant MAPK signaling. J Cell Sci. 2008;121:2339–49.

    Article  CAS  PubMed  Google Scholar 

  • Violin JD, Zhang J, Tsien RY, Newton AC. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol. 2003;161:899–909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang MT, Holderfield M, Galeas J, Delrosario R, To MD, Balmain A, McCormick F. K-Ras promotes tumorigenicity through suppression of non-canonical Wnt signaling. Cell. 2015;163:1237–51.

    Article  CAS  PubMed  Google Scholar 

  • Wu-Zhang AX, Newton AC. Protein kinase C pharmacology: refining the toolbox. Biochem J. 2013;452:195–209.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra C. Newton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Newton, A.C. (2018). Protein Kinase C (Prkc). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101822

Download citation

Publish with us

Policies and ethics