Skip to main content

MEG in Epilepsy and Pre-surgical Functional Mapping

  • Living reference work entry
  • First Online:
  • 257 Accesses

Abstract

Localization of epileptic discharges and pre-surgical functional brain mapping are the most common clinical applications of magnetoencephalography (MEG). According to the European Union-funded EPILEPSY project survey, performed in 2014, MEG source localization was used as a part of the pre-surgical diagnostic workup in 7 out of 25 centers (28%) (Mouthaan et al (2016) Epilepsia 57:770–776) indicating that the majority of “MEG centers” provide clinical services (Bagic et al. (2009) J Clin Neurophysiol 26:290–293). MEG is also utilized for pre-surgical functional brain mapping, that is, for accurate localization of “eloquent” cortex, used for planning surgical procedures near healthy functional brain areas. For example, somatosensory evoked fields to median nerve stimulation lead to an accurate, within a few millimeters, identification of the central sulcus, which may not be identifiable in anatomical MRI alone. In addition, MEG analysis of event-related potentials or event-related (de)synchronization in response to language tasks provides more than 80% sensitivity and specificity in language lateralization for intracarotid amobarbital procedures. Therefore, MEG is a noninvasive alternative for pre-surgical determination of the language-dominant hemisphere. In this chapter, the current status of clinical MEG in epilepsy and pre-surgical mapping is reviewed.

This is a preview of subscription content, log in via an institution.

References

  • Abou-Khalil B (2007) An update on determination of language dominance in screening for epilepsy surgery: the Wada test and newer noninvasive alternatives. Epilepsia 48:442–455

    Article  Google Scholar 

  • Agirre-Arrizubieta Z, Huiskamp GJM, Ferrier CH et al (2009) Interictal magnetoencephalography and the irritative zone in the electrocorticogram. Brain 132:3060–3071

    Article  Google Scholar 

  • Almubarak S, Alexopoulos A, Von-Podewils F et al (2014) The correlation of magnetoencephalography to intracranial EEG in localizing the epileptogenic zone: a study of the surgical resection outcome. Epilepsy Res 108:1581–1590

    Article  Google Scholar 

  • Assaf BA, Karkar KM, Laxer KD et al (2003) Ictal magnetoencephalography in temporal and extratemporal lobe epilepsy. Epilepsia 44:1320–1327

    Article  Google Scholar 

  • Aydin Ü, Vorwerk J, Dümpelmann M et al (2015) Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis. PLoS One 10:e0118753

    Article  Google Scholar 

  • Bagić AI (2011) Disparities in clinical magnetoencephalography practice in the United States: a survey-based appraisal. J Clin Neurophysiol 28:341–347

    Article  Google Scholar 

  • Bagic A, Funke ME, Ebersole J (2009) American Clinical MEG Society (ACMEGS) position statement: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical evaluation of patients with medically intractable localization-related epilepsy. J Clin Neurophysiol 26:290–293

    Article  Google Scholar 

  • Bagić AI, Barkley GL, Rose DF, Ebersole JS (2011a) American clinical magnetoencephalography society clinical practice guideline 4: qualifications of MEG-EEG personnel. J Clin Neurophysiol 28:364–365

    Article  Google Scholar 

  • Bagić AI, Knowlton RC, Rose DF, Ebersole JS (2011b) American clinical magnetoencephalography society clinical practice guideline 3: MEG-EEG reporting. J Clin Neurophysiol 28:362–363

    Article  Google Scholar 

  • Bagić AI, Knowlton RC, Rose DF, Ebersole JS (2011c) American clinical magnetoencephalography society clinical practice guideline 1: recording and analysis of spontaneous cerebral activity. J Clin Neurophysiol 28:348–354

    Google Scholar 

  • Balakrishnan G, Grover KM, Mason K et al (2007) A retrospective analysis of the effect of general anesthetics on the successful detection of interictal epileptiform activity in magnetoencephalography. Anesth Analg 104:1493–1497

    Article  Google Scholar 

  • Barkley GL, Baumgartner C (2003) MEG and EEG in epilepsy. J Clin Neurophysiol 20:163–178

    Article  Google Scholar 

  • Barth DS (1993) The neurophysiological basis of epileptiform magnetic fields and localization of neocortical sources. J Clin Neurophysiol 10:99–107

    Article  Google Scholar 

  • Bast T, Ramantani G, Boppel T et al (2005) Source analysis of interictal spikes in polymicrogyria: loss of relevant cortical fissures requires simultaneous EEG to avoid MEG misinterpretation. NeuroImage 25:1232–1241

    Article  Google Scholar 

  • Bast T, Wright T, Boor R et al (2007) Combined EEG and MEG analysis of early somatosensory evoked activity in children and adolescents with focal epilepsies. Clin Neurophysiol 118:1721–1735

    Article  Google Scholar 

  • Baumgartner C, Pataraia E (2006) Revisiting the role of magnetoencephalography in epilepsy. Curr Opin Neurol 19:181–186

    Article  Google Scholar 

  • Berger MS, Cohen WA, Ojemann GA (1990) Correlation of motor cortex brain mapping data with magnetic resonance imaging. J Neurosurg 72:383–387

    Article  Google Scholar 

  • Bowyer SM, Mason K, Tepley N et al (2003) Magnetoencephalographic validation parameters for clinical evaluation of interictal epileptic activity. J Clin Neurophysiol 20:87–93

    Article  Google Scholar 

  • Bowyer SM, Moran JE, Mason KM et al (2004) MEG localization of language-specific cortex utilizing MR-FOCUSS. Neurology 62:2247–2255

    Article  Google Scholar 

  • Bowyer SM, Moran JE, Weiland BJ et al (2005) Language laterality determined by MEG mapping with MR-FOCUSS. Epilepsy Behav 6:235–241

    Article  Google Scholar 

  • Burch J, Marson A, Beyer F et al (2012) Dilemmas in the interpretation of diagnostic accuracy studies on presurgical workup for epilepsy surgery. Epilepsia 53:1294–1302

    Article  Google Scholar 

  • Burgess RC, Barkley GL, Bagić AI (2011a) Turning a new page in clinical magnetoencephalography: practicing according to the first clinical practice guidelines. J Clin Neurophysiol 28:336–340

    Article  Google Scholar 

  • Burgess RC, Funke ME, Bowyer SM et al (2011b) American clinical magnetoencephalography society clinical practice guideline 2: presurgical functional brain mapping using magnetic evoked fields. J Clin Neurophysiol 28:355–361

    Article  Google Scholar 

  • Carrette E, De Tiège X, Op De Beeck M et al (2011) Magnetoencephalography in epilepsy patients carrying a vagus nerve stimulator. Epilepsy Res 93:44–52

    Article  Google Scholar 

  • Chang EF, Nagarajan SS, Mantle M et al (2009) Magnetic source imaging for the surgical evaluation of electroencephalography-confirmed secondary bilateral synchrony in intractable epilepsy. J Neurosurg 111:1248–1256

    Article  Google Scholar 

  • Colon AJ, Ossenblok P, Nieuwenhuis L et al (2009) Use of routine MEG in the primary diagnostic process of epilepsy. J Clin Neurophysiol 26:326–332

    Article  Google Scholar 

  • De Jongh A, De Munck JC, Gonçalves SI, Ossenblok P (2005) Differences in MEG/EEG epileptic spike yields explained by regional differences in signal-to-noise ratios. J Clin Neurophysiol 22:153–158

    Article  Google Scholar 

  • De Tiège X, Carrette E, Legros B et al (2012) Clinical added value of magnetic source imaging in the presurgical evaluation of refractory focal epilepsy. J Neurol Neurosurg Psychiatry 83:417–423

    Article  Google Scholar 

  • Donahue D, Sanchez R, Hernandez A et al (2007) Preservation of a subcutaneous pocket for vagus nerve stimulation pulse generator during magnetoencephalography. Technical note. J Neurosurg 107:519–520

    Google Scholar 

  • Doss RC, Zhang W, Risse GL, Dickens DL (2009) Lateralizing language with magnetic source imaging: validation based on the Wada test. Epilepsia 50:2242–2248

    Article  Google Scholar 

  • Duncan JS (2010) Imaging in the surgical treatment of epilepsy. Nat Rev Neurol 6:537–550

    Article  Google Scholar 

  • Ebersole JS, Ebersole SM (2010) Combining MEG and EEG source modeling in epilepsy evaluations. J Clin Neurophysiol 27:360–371

    Article  Google Scholar 

  • Enatsu R, Mikuni N, Usui K et al (2008) Usefulness of MEG magnetometer for spike detection in patients with mesial temporal epileptic focus. NeuroImage 41:1206–1219

    Article  Google Scholar 

  • Englot DJ, Nagarajan SS, Imber BS et al (2015a) Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia 56:949–958

    Article  Google Scholar 

  • Englot DJ, Hinkley LB, Kort NS et al (2015b) Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain 138:2249–2262

    Article  Google Scholar 

  • Evans LT, Morse R, Roberts DW (2012) Epilepsy surgery in tuberous sclerosis: a review. Neurosurg Focus 32:E5

    Article  Google Scholar 

  • Fernandes JM, Da Silva AM, Huiskamp G et al (2005) What does an epileptiform spike look like in MEG? Comparison between coincident EEG and MEG spikes. J Clin Neurophysiol 22:68–73

    Article  Google Scholar 

  • Findlay AM, Ambrose JB, Cahn-Weiner DA et al (2012) Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging. Ann Neurol 71:668–686

    Article  Google Scholar 

  • Fischer MJM, Scheler G, Stefan H (2005) Utilization of magnetoencephalography results to obtain favourable outcomes in epilepsy surgery. Brain 128:153–157

    Article  Google Scholar 

  • Fisher RS, Van Emde Boas W, Blume W et al (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472

    Article  Google Scholar 

  • Fujiwara H, Greiner HM, Hemasilpin N et al (2012) Ictal MEG onset source localization compared to intracranial EEG and outcome: improved epilepsy presurgical evaluation in pediatrics. Epilepsy Res 99:214–224

    Article  Google Scholar 

  • Hashizume A, Iida K, Shirozu H et al (2007) Gradient magnetic-field topography for dynamic changes of epileptic discharges. Brain Res 1144:175–179

    Article  Google Scholar 

  • Heers M, Rampp S, Kaltenhäuser M et al (2010a) Detection of epileptic spikes by magnetoencephalography and electroencephalography after sleep deprivation. Seizure 19:397–403

    Article  Google Scholar 

  • Heers M, Rampp S, Kaltenhäuser M et al (2010b) Monofocal MEG in lesional TLE: does video EEG monitoring add crucial information? Epilepsy Res 92:54–62

    Article  Google Scholar 

  • Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage 16:638–650

    Article  Google Scholar 

  • Hirata M, Goto T, Barnes G et al (2010) Language dominance and mapping based on neuromagnetic oscillatory changes: comparison with invasive procedures. J Neurosurg 112:528–538

    Article  Google Scholar 

  • Huiskamp G, Agirre-Arrizubieta Z, Leijten F (2010) Regional differences in the sensitivity of MEG for interictal spikes in epilepsy. Brain Topogr 23:159–164

    Article  Google Scholar 

  • Iida K, Otsubo H, Matsumoto Y et al (2005a) Characterizing magnetic spike sources by using magnetoencephalography-guided neuronavigation in epilepsy surgery in pediatric patients. J Neurosurg 102:187–196

    Article  Google Scholar 

  • Iida K, Otsubo H, Mohamed IS et al (2005b) Characterizing magnetoencephalographic spike sources in children with tuberous sclerosis complex. Epilepsia 46:1510–1517. https://doi.org/10.1111/j.1528-1167.2005.14005.x

    Article  Google Scholar 

  • Ishitobi M, Nakasato N, Yamamoto K, Iinuma K (2005) Opercular to interhemispheric source distribution of benign rolandic spikes of childhood. Neuroimage 25:417–423

    Article  Google Scholar 

  • Iwasaki M, Burgess RC (2008) Magnetoencephalography in the evaluation of the irritative zone. In: Lüders HO (ed) Textbook of epilepsy surgery. Informa Healthcare, London, pp 537–543

    Chapter  Google Scholar 

  • Iwasaki M, Nakasato N, Shamoto H et al (2002) Surgical implications of neuromagnetic spike localization in temporal lobe epilepsy. Epilepsia 43:415–424

    Article  Google Scholar 

  • Iwasaki M, Nakasato N, Shamoto H, Yoshimoto T (2003) Focal magnetoencephalographic spikes in the superior temporal plane undetected by scalp EEG. J Clin Neurosci 10:236–238

    Article  Google Scholar 

  • Iwasaki M, Pestana E, Burgess RC et al (2005) Detection of epileptiform activity by human interpreters: blinded comparison between electroencephalography and magnetoencephalography. Epilepsia 46:59–68

    Article  Google Scholar 

  • Jansen FE, Huiskamp G, Van Huffelen AC et al (2006) Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia 47:108–114

    Article  Google Scholar 

  • Jung J, Bouet R, Delpuech C et al (2013) The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy. Brain 136:3176–3186

    Article  Google Scholar 

  • Kagawa K, Iida K, Hashizume A et al (2016) Magnetoencephalography using gradient magnetic field topography (GMFT) can predict successful anterior corpus callosotomy in patients with drop attacks. Clin Neurophysiol 127:221–229

    Article  Google Scholar 

  • Kaiboriboon K, Nagarajan S, Mantle M, Kirsch HE (2010) Interictal MEG/MSI in intractable mesial temporal lobe epilepsy: spike yield and characterization. Clin Neurophysiol 121:325–331

    Article  Google Scholar 

  • Kakisaka Y, Nakasato N, Haginoya K et al (2009) Sensorimotor seizures of pediatric onset with unusual posteriorly oriented rolandic spikes. Epilepsy Res 84:153–158

    Article  Google Scholar 

  • Kakisaka Y, Alexopoulos AV, Gupta A et al (2010) Generalized 3-Hz spike-and-wave complexes emanating from focal epileptic activity in pediatric patients. Epilepsy Behav 20:103–106

    Article  Google Scholar 

  • Kakisaka Y, Gupta A, Wang ZI et al (2011a) Different cortical involvement pattern of generalized and localized spasms: a magnetoencephalography study. Epilepsy Behav 22:599–601

    Article  Google Scholar 

  • Kakisaka Y, Iwasaki M, Haginoya K et al (2011b) Somatotopic distribution of peri-rolandic spikes may predict prognosis in pediatric-onset epilepsy with sensorimotor seizures. Clin Neurophysiol 122:869–873

    Article  Google Scholar 

  • Kakisaka Y, Iwasaki M, Alexopoulos AV et al (2012a) Magnetoencephalography in fronto-parietal opercular epilepsy. Epilepsy Res 102:71–77

    Article  Google Scholar 

  • Kakisaka Y, Wang ZI, Mosher JC et al (2012b) Clinical evidence for the utility of movement compensation algorithm in magnetoencephalography: successful localization during focal seizure. Epilepsy Res 101:191–196

    Article  Google Scholar 

  • Kakisaka Y, Wang ZI, Mosher JC et al (2012d) Magnetoencephalography’s higher sensitivity to epileptic spikes may elucidate the profile of electroencephalographically negative epileptic seizures. Epilepsy Behav 23:171–173

    Article  Google Scholar 

  • Kakisaka Y, Mosher JC, Wang ZI et al (2013) Utility of temporally-extended signal space separation algorithm for magnetic noise from vagal nerve stimulators. Clin Neurophysiol 124:1277–1282

    Article  Google Scholar 

  • Kawamura T, Nakasato N, Seki K et al (1996) Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses. Electroencephalogr Clin Neurophysiol 100:44–50

    Article  Google Scholar 

  • Kirsch HE, Mantle M, Nagarajan SS (2007a) Concordance between routine interictal magnetoencephalography and simultaneous scalp electroencephalography in a sample of patients with epilepsy. J Clin Neurophysiol 24:215–231

    Article  Google Scholar 

  • Kirsch HE, Zhu Z, Honma S et al (2007b) Predicting the location of mouth motor cortex in patients with brain tumors by using somatosensory evoked field measurements. J Neurosurg 107:481–487

    Article  Google Scholar 

  • Knake S, Halgren E, Shiraishi H et al (2006) The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients. Epilepsy Res 69:80–86

    Article  Google Scholar 

  • Knowlton RC, Elgavish R, Howell J et al (2006) Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study. Ann Neurol 59:835–842

    Article  Google Scholar 

  • Knowlton RC, Razdan SN, Limdi N et al (2009) Effect of epilepsy magnetic source imaging on intracranial electrode placement. Ann Neurol 65:716–723

    Article  Google Scholar 

  • König MW, Mahmoud MA, Fujiwara H et al (2009) Influence of anesthetic management on quality of magnetoencephalography scan data in pediatric patients: a case series. Paediatr Anaesth 19:507–512

    Article  Google Scholar 

  • Krishnan B, Vlachos I, Wang ZI et al (2015) Epileptic focus localization based on resting state interictal MEG recordings is feasible irrespective of the presence or absence of spikes. Clin Neurophysiol 126:667–674

    Article  Google Scholar 

  • Kubota Y, Otsuki T, Kaneko Y et al (2007) Delayed N100m latency in focal epilepsy associated with spike dipoles at the primary auditory cortex. J Clin Neurophysiol 24:263–270

    Article  Google Scholar 

  • Lau M, Yam D, Burneo JG (2008) A systematic review on MEG and its use in the presurgical evaluation of localization-related epilepsy. Epilepsy Res 79:97–104

    Article  Google Scholar 

  • Lee D, Sawrie SM, Simos PG et al (2006) Reliability of language mapping with magnetic source imaging in epilepsy surgery candidates. Epilepsy Behav 8:742–749

    Article  Google Scholar 

  • Lee JW, Tanaka N, Shiraishi H et al (2010a) Evaluation of postoperative sharp waveforms through EEG and magnetoencephalography. J Clin Neurophysiol 27:7–11

    Article  Google Scholar 

  • Lee S-Y, Kim JS, Chung CK et al (2010b) Assessment of language dominance by event-related oscillatory changes in an auditory language task: magnetoencephalography study. J Clin Neurophysiol 27:263–269

    Article  Google Scholar 

  • Leijten FSS, Huiskamp G (2008) Interictal electromagnetic source imaging in focal epilepsy: practices, results and recommendations. Curr Opin Neurol 21:437–445

    Article  Google Scholar 

  • Leijten FSS, Huiskamp GM, Hilgersom I, Van Huffelen AC (2003) High-resolution source imaging in mesiotemporal lobe epilepsy: a comparison between MEG and simultaneous EEG. J Clin Neurophysiol 20:227–238

    Article  Google Scholar 

  • Lin YY, Shih YH, Hsieh JC et al (2003) Magnetoencephalographic yield of interictal spikes in temporal lobe epilepsy. Comparison with scalp EEG recordings. Neuroimage 19:1115–1126

    Article  Google Scholar 

  • Lüders HO, Engel JJ, Munari C (1993) General principles. In: Engel JJ (ed) Surgical treatment of epilepsy, 2nd edn. Raven Press, New York, pp 137–153

    Google Scholar 

  • Mäkelä JP, Forss N, Jääskeläinen J et al (2006) Magnetoencephalography in neurosurgery. Neurosurgery 59:493–510

    Article  Google Scholar 

  • Malmivuo J, Suihko V, Eskola H (1997) Sensitivity distributions of EEG and MEG measurements. IEEE Trans Biomed Eng 44:196–208

    Article  Google Scholar 

  • McDonald CR, Thesen T, Hagler DJ et al (2009) Distributed source modeling of language with magnetoencephalography: application to patients with intractable epilepsy. Epilepsia 50:2256–2266

    Article  Google Scholar 

  • Medvedovsky M, Taulu S, Gaily E et al (2012) Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography. Epilepsia 53:1649–1657

    Article  Google Scholar 

  • Merrifield WS, Simos PG, Papanicolaou AC et al (2007) Hemispheric language dominance in magnetoencephalography: sensitivity, specificity, and data reduction techniques. Epilepsy Behav 10:120–128

    Article  Google Scholar 

  • Mohamed IS, Otsubo H, Ochi A et al (2007) Utility of magnetoencephalography in the evaluation of recurrent seizures after epilepsy surgery. Epilepsia 48:2150–2159

    Article  Google Scholar 

  • Mohamed IS, Gibbs SA, Robert M et al (2013) The utility of magnetoencephalography in the presurgical evaluation of refractory insular epilepsy. Epilepsia 54:1950–1959

    Article  Google Scholar 

  • Mouthaan BE, Rados M, Barsi P et al (2016) Current use of imaging and electromagnetic source localization procedures in epilepsy surgery centers across Europe. Epilepsia 57:770–776

    Article  Google Scholar 

  • Mu J, Rampp S, Carrette E et al (2014) Clinical relevance of source location in frontal lobe epilepsy and prediction of postoperative long-term outcome. Seizure 23:553–559

    Article  Google Scholar 

  • Murakami H, Wang ZI, Marashly A et al (2016) Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain 139:2935–2947

    Article  Google Scholar 

  • Nagamatsu K, Nakasato N, Hatanaka K et al (2001) Neuromagnetic localization of N15, the initial cortical response to lip stimulus. Neuroreport 12:1–5

    Article  Google Scholar 

  • Nakajima M, Widjaja E, Baba S et al (2016) Remote MEG dipoles in focal cortical dysplasia at bottom of sulcus. Epilepsia 57:1169–1178

    Article  Google Scholar 

  • Nakasato N, Yoshimoto T (2000) Somatosensory, auditory, and visual evoked magnetic fields in patients with brain diseases. J Clin Neurophysiol 17:201–211

    Article  Google Scholar 

  • Nakasato N, Kumabe T, Kanno A et al (1997) Neuromagnetic evaluation of cortical auditory function in patients with temporal lobe tumors. J Neurosurg 86:610–618

    Article  Google Scholar 

  • Nissen IA, Stam CJ, Reijneveld JC et al (2017) Identifying the epileptogenic zone in interictal resting-state MEG source-space networks. Epilepsia 58:137–148

    Article  Google Scholar 

  • Oishi M, Kameyama S, Masuda H et al (2006) Single and multiple clusters of magnetoencephalographic dipoles in neocortical epilepsy: significance in characterizing the epileptogenic zone. Epilepsia 47:355–364

    Article  Google Scholar 

  • Ossadtchi A, Baillet S, Mosher JC et al (2004) Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering. Clin Neurophysiol 115:508–522

    Article  Google Scholar 

  • Ossenblok P, De Munck JC, Colon A et al (2007) Magnetoencephalography is more successful for screening and localizing frontal lobe epilepsy than electroencephalography. Epilepsia 48:2139–2149

    Article  Google Scholar 

  • Papanicolaou AC, Simos PG, Castillo EM et al (2004) Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 100:867–876

    Article  Google Scholar 

  • Park H-M, Nakasato N, Iwasaki M et al (2004) Comparison of magnetoencephalographic spikes with and without concurrent electroencephalographic spikes in extratemporal epilepsy. Tohoku J Exp Med 203:165–174

    Article  Google Scholar 

  • Pataraia E, Lindinger G, Deecke L et al (2005) Combined MEG/EEG analysis of the interictal spike complex in mesial temporal lobe epilepsy. NeuroImage 24:607–614

    Article  Google Scholar 

  • Pellegrino G, Hedrich T, Chowdhury RA et al (2018) Clinical yield of magnetoencephalography distributed source imaging in epilepsy: a comparison with equivalent current dipole method. Hum Brain Mapp 39:218–231

    Article  Google Scholar 

  • Pelletier I, Sauerwein HC, Lepore F et al (2007) Non-invasive alternatives to the Wada test in the presurgical evaluation of language and memory functions in epilepsy patients. Epileptic Disord 9:111–126

    Google Scholar 

  • Perkins FF, Breier J, McManis MH et al (2008) Benign rolandic epilepsy – perhaps not so benign: use of magnetic source imaging as a predictor of outcome. J Child Neurol 23:389–393

    Article  Google Scholar 

  • Pirmoradi M, Béland R, Nguyen DK et al (2010) Language tasks used for the presurgical assessment of epileptic patients with MEG. Epileptic Disord 12:97–108

    Google Scholar 

  • Ramachandrannair R, Otsubo H, Shroff MM et al (2007) MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia 48:149–157

    Article  Google Scholar 

  • Ramachandrannair R, Ochi A, Imai K et al (2008) Epileptic spasms in older pediatric patients: MEG and ictal high-frequency oscillations suggest focal-onset seizures in a subset of epileptic spasms. Epilepsy Res 78:216–224

    Article  Google Scholar 

  • Ramantani G, Boor R, Paetau R et al (2006) MEG versus EEG: influence of background activity on interictal spike detection. J Clin Neurophysiol 23:498–508

    Article  Google Scholar 

  • Ramanujam B, Bharti K, Viswanathan V et al (2017) Can ictal-MEG obviate the need for phase II monitoring in people with drug-refractory epilepsy? A prospective observational study. Seizure 45:17–23

    Article  Google Scholar 

  • Rodin E, Funke M, Berg P, Matsuo F (2004) Magnetoencephalographic spikes not detected by conventional electroencephalography. Clin Neurophysiol 115:2041–2047

    Article  Google Scholar 

  • Sakurai K, Tanaka N, Kamada K et al (2007) Magnetoencephalographic studies of focal epileptic activity in three patients with epilepsy suggestive of Lennox-Gastaut syndrome. Epileptic Disord 9:158–163

    Google Scholar 

  • Sakurai K, Takeda Y, Tanaka N et al (2010) Generalized spike-wave discharges involve a default mode network in patients with juvenile absence epilepsy: a MEG study. Epilepsy Res 89:176–184

    Article  Google Scholar 

  • Salayev KA, Nakasato N, Ishitobi M et al (2006) Spike orientation may predict epileptogenic side across cerebral sulci containing the estimated equivalent dipole. Clin Neurophysiol 117:1836–1843

    Article  Google Scholar 

  • Salmelin R, Hari R (1994) Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalogr Clin Neurophysiol 91:237–248

    Article  Google Scholar 

  • Schneider F, Alexopoulos AV, Wang Z et al (2012) Magnetic source imaging in non-lesional neocortical epilepsy: additional value and comparison with ICEEG. Epilepsy Behav 24:234–240

    Article  Google Scholar 

  • Schneider F, Irene Wang Z, Alexopoulos AV et al (2013) Magnetic source imaging and ictal SPECT in MRI-negative neocortical epilepsies: additional value and comparison with intracranial EEG. Epilepsia 54:359–369

    Article  Google Scholar 

  • Schwartz ES, Edgar JC, Gaetz WC, Roberts TPL (2010) Magnetoencephalography. Pediatr Radiol 40:50–58

    Article  Google Scholar 

  • Seo JH, Holland K, Rose D et al (2011) Multimodality imaging in the surgical treatment of children with nonlesional epilepsy. Neurology 76:41–48

    Article  Google Scholar 

  • Shibasaki H, Ikeda A, Nagamine T (2007) Use of magnetoencephalography in the presurgical evaluation of epilepsy patients. Clin Neurophysiol 118:1438–1448

    Article  Google Scholar 

  • Shiraishi H, Ahlfors SP, Stufflebeam SM et al (2005) Application of magnetoencephalography in epilepsy patients with widespread spike or slow-wave activity. Epilepsia 46:1264–1272

    Article  Google Scholar 

  • Shiraishi H, Ahlfors SP, Stufflebeam SM et al (2011) Comparison of three methods for localizing interictal epileptiform discharges with magnetoencephalography. J Clin Neurophysiol 28:431–440

    Google Scholar 

  • Shirozu H, Iida K, Hashizume A et al (2010) Gradient magnetic-field topography reflecting cortical activities of neocortical epilepsy spikes. Epilepsy Res 90:121–131

    Article  Google Scholar 

  • Shirozu H, Hashizume A, Masuda H et al (2017) Analysis of ictal magnetoencephalography using gradient magnetic-field topography (GMFT) in patients with neocortical epilepsy. Clin Neurophysiol 128:1504–1512

    Article  Google Scholar 

  • Slater JD, Khan S, Li Z, Castillo E (2012) Characterization of interictal epileptiform discharges with time-resolved cortical current maps using the helmholtz-hodge decomposition. Front Neurol 3:138

    Article  Google Scholar 

  • Song T, Cui L, Gaa K et al (2009) Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings. J Clin Neurophysiol 26:392–400

    Article  Google Scholar 

  • Stefan H, Trinka E (2017) Magnetoencephalography (MEG): past, current and future perspectives for improved differentiation and treatment of epilepsies. Seizure 44:121–124

    Article  Google Scholar 

  • Stefan H, Hummel C, Scheler G et al (2003) Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 126:2396–2405

    Article  Google Scholar 

  • Stefan H, Paulini-Ruf A, Hopfengärtner R, Rampp S (2009) Network characteristics of idiopathic generalized epilepsies in combined MEG/EEG. Epilepsy Res 85:187–198

    Article  Google Scholar 

  • Stefan H, Heers M, Schmitt HJ et al (2010) Increased spike frequency during general anesthesia with etomidate for magnetoencephalography in patients with focal epilepsies. Clin Neurophysiol 121:1220–1226

    Article  Google Scholar 

  • Stefan H, Rampp S, Knowlton RC (2011a) Magnetoencephalography adds to the surgical evaluation process. Epilepsy Behav 20:172–177

    Article  Google Scholar 

  • Stefan H, Wu X, Buchfelder M et al (2011b) MEG in frontal lobe epilepsies: localization and postoperative outcome. Epilepsia 52:2233–2238

    Article  Google Scholar 

  • Stephen JM, Ranken DM, Aine CJ et al (2005) Differentiability of simulated MEG hippocampal, medial temporal and neocortical temporal epileptic spike activity. J Clin Neurophysiol 22:388–401

    Google Scholar 

  • Stufflebeam SM, Tanaka N, Ahlfors SP (2009) Clinical applications of magnetoencephalography. Hum Brain Mapp 30:1813–1823

    Article  Google Scholar 

  • Sutherling WW, Mamelak AN, Thyerlei D et al (2008) Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology 71:990–996

    Article  Google Scholar 

  • Szmuk P, Kee S, Pivalizza EG et al (2003) Anaesthesia for magnetoencephalography in children with intractable seizures. Paediatr Anaesth 13:811–817

    Article  Google Scholar 

  • Tanaka N, Cole AJ, Von Pechmann D et al (2009a) Dynamic statistical parametric mapping for analyzing ictal magnetoencephalographic spikes in patients with intractable frontal lobe epilepsy. Epilepsy Res 85:279–286

    Article  Google Scholar 

  • Tanaka N, Thiele EA, Madsen JR et al (2009b) Magnetoencephalographic analysis in patients with vagus nerve stimulator. Pediatr Neurol 41:383–387

    Article  Google Scholar 

  • Tanaka N, Liu H, Reinsberger C et al (2013) Language lateralization represented by spatiotemporal mapping of magnetoencephalography. AJNR Am J Neuroradiol 34:558–563

    Article  Google Scholar 

  • Uda T, Tsuyuguchi N, Okumura E et al (2012) sLORETA-qm for interictal MEG epileptic spike analysis: comparison of location and quantity with equivalent dipole estimation. Clin Neurophysiol 123:1496–1501

    Article  Google Scholar 

  • Usui K, Ikeda A, Nagamine T et al (2009) Abnormal auditory cortex with giant N100m signal in patients with autosomal dominant lateral temporal lobe epilepsy. Clin Neurophysiol 120:1923–1926

    Article  Google Scholar 

  • Van Poppel M, Wheless JW, Clarke DF et al (2012) Passive language mapping with magnetoencephalography in pediatric patients with epilepsy. J Neurosurg Pediatr 10:96–102

    Article  Google Scholar 

  • Wang ZI, Alexopoulos AV, Jones SE et al (2014) Linking MRI postprocessing with magnetic source imaging in MRI-negative epilepsy. Ann Neurol 75:759–770

    Article  Google Scholar 

  • Wennberg R, Valiante T, Cheyne D (2011) EEG and MEG in mesial temporal lobe epilepsy: where do the spikes really come from? Clin Neurophysiol 122:1295–1313

    Article  Google Scholar 

  • Westmijse I, Ossenblok P, Gunning B, Van Luijtelaar G (2009) Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study. Epilepsia 50:2538–2548

    Article  Google Scholar 

  • Widjaja E, Otsubo H, Raybaud C et al (2008) Characteristics of MEG and MRI between Taylor’s focal cortical dysplasia (type II) and other cortical dysplasia: surgical outcome after complete resection of MEG spike source and MR lesion in pediatric cortical dysplasia. Epilepsy Res 82:147–155

    Article  Google Scholar 

  • Widjaja E, Zarei Mahmoodabadi S, Otsubo H et al (2009) Subcortical alterations in tissue microstructure adjacent to focal cortical dysplasia: detection at diffusion-tensor MR imaging by using magnetoencephalographic dipole cluster localization. Radiology 251:206–215

    Article  Google Scholar 

  • World Health Organization (2009) Epilepsy fact sheet. http://www.who.int/mediacentre/factsheets/fs999/en/index.html. Accessed 16 Feb 2013

  • Wu JY, Sutherling WW, Koh S et al (2006) Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology 66:1270–1272

    Article  Google Scholar 

  • Wu X-T, Rampp S, Buchfelder M et al (2013) Interictal magnetoencephalography used in magnetic resonance imaging-negative patients with epilepsy. Acta Neurol Scand 127:274–280

    Article  Google Scholar 

  • Yoshinaga H, Kobayashi K, Hoshida T et al (2008) Magnetoencephalogram in a postoperative case with a large skull defect. Pediatr Neurol 39:48–51

    Article  Google Scholar 

  • Yu HY, Nakasato N, Iwasaki M et al (2004) Neuromagnetic separation of secondarily bilateral synchronized spike foci: report of three cases. J Clin Neurosci 11:644–648

    Article  Google Scholar 

  • Zhang R, Wu T, Wang Y et al (2011) Interictal magnetoencephalographic findings related with surgical outcomes in lesional and nonlesional neocortical epilepsy. Seizure 20:692–700

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Iwasaki .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Iwasaki, M., Nakasato, N. (2019). MEG in Epilepsy and Pre-surgical Functional Mapping. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics