Skip to main content

The Methane-Oxidizing Bacteria (Methanotrophs)

  • Living reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Aerobic methane-oxidizing bacteria (methanotrophs) have the unique ability to grow on methane as their sole source of carbon and energy. They are ubiquitous in the environment and play a major role in the removal of the greenhouse gas methane from the biosphere before it is released into the atmosphere. The ability to drive oxygen-dependent methane oxidation was once assumed to be an exceptional property of a very restricted set of microbes belonging to two classes of Proteobacteria: Alphaproteobacteria and Gammaproteobacteria. While Proteobacteria still form the foundation of the methanotrophic landscape in many ecosystems, the ability to oxidize methane has also been demonstrated in the microbial phyla Verrucomicrobia and Candidatus Methylomirabilis oxyfera (phylum NC10). Over the years various methanotrophs have also been isolated, including facultative methanotrophs, extremophile species, and anaerobes, thus expanding both the taxonomic diversity and physiological range of methanotrophy. In addition, a number of cross-species interactions that enable efficient methane utilization have been identified, changing the way we view mechanisms of methane utilization. Finally, a thorough revision of core metabolic pathways has been made, and whole-genome metabolic models have been constructed, which facilitate the metabolic engineering of methanotrophic bacteria and expand the potential for their biotechnological applications.

This is a preview of subscription content, log in via an institution.

References

  • Akberdin IR, Thompson M, Kalyuzhnaya MG (2018a) Systems biology and metabolic modeling of C1-metabolism. In: Kalyuzhnaya MG, Jing XH (eds) Methane biocatalysis: paving the way to sustainability. Springer International Publishing, Switzerland

    Google Scholar 

  • Akberdin IR, Thompson M, Hamilton R, Desai N, Alexander D, Henard CA et al (2018b) Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach. Sci Rep 8:2512. https://doi.org/10.1038/s41598-018-20574-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic, New York

    Google Scholar 

  • Anthony C (2004) The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 428:2–9

    Article  CAS  PubMed  Google Scholar 

  • Anthony C (2011) How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 94:109–137

    Article  CAS  PubMed  Google Scholar 

  • Anthony C, Zatman LJ (1964) The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem J 92:614–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony C, Zatman LJ (1965) The microbial oxidation of methanol. The alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J 96:808–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony C, Zatman LJ (1967a) The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: a new oxidoreductase prosthetic group. Biochem J 104:960–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony C, Zatman LJ (1967b) The microbial oxidation of methanol. Purification and properties of the alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J 104:953–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anvar SY, Frank J, Pol A, Schmitz A, Kraaijeveld K, den Dunnen JT, Op den Camp HJ (2014) The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genomics 15:914

    Article  PubMed  PubMed Central  Google Scholar 

  • Auman AJ, Stolyar S, Costello AM, Lidstrom ME (2000) Molecular characterization of methylotrophic isolates from freshwater lake sediments. Appl Environ Microbiol 66:5259–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci U S A 105:10203–10208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, Klotz MG, Jetten MS, Vuilleumier S, Han J, Peters L, Mikhailova N, Teshima H, Tapia R, Kyrpides N, Ivanova N, Pagani I, Cheng JF, Goodwin L, Han C, Hauser L, Land ML, Lapidus A, Lucas S, Pitluck S, Woyke T, Stein L, Murrell JC (2011) Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol 193:7001–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168:493–503

    Article  CAS  PubMed  Google Scholar 

  • Bodrossy L, Kovacs KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidizing γ-proteobacterium. FEMS Microbiol Lett 170:335–341

    CAS  Google Scholar 

  • Borodina E, Nichol T, Dumont MG, Smith TJ, Murrell JC (2007) Mutagenesis of the “leucine gate” to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl Environ Microbiol 73:6460–6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JP (2006) The methanotrophs- the families Methylococcaceae and Methylocystaceae. PRO 5:266–289

    Google Scholar 

  • Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the Group I methanotrophs. Int J Syst Bacteriol 44:375–353

    Article  Google Scholar 

  • Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Zheng Y, Bodelier PL, Conrad R, Jia Z (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 1:11728

    Article  CAS  Google Scholar 

  • Cao Q, Liu X, Ran Y, Li Z, Li D (2019) Methane oxidation coupled to denitrification under microaerobic and hypoxic conditions in leach bed bioreactors. Sci Total Environ 649:1–11

    Article  CAS  PubMed  Google Scholar 

  • Cébron A, Bodrossy L, Chen Y, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiol Ecol 62:12–23

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, Alam M, Theisen AR, Murrell JC, Dunfield PF (2010) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192:3840–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chistoserdova L (2016) Lanthanides: new life metals? World J Microbiol Biotechnol 32:138

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Kalyuzhnaya MG (2018) Current trends in methylotrophy. Trends Microbiol 26(8):703–714

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Lidstrom ME (2013) Aerobic methylotrophic prokaryotes. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes. Springer, Heidelberg, pp 227–285

    Google Scholar 

  • Chistoserdova L, Vorholt JA, Lidstrom ME (2005) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu F, Lidstrom ME (2016) XoxF acts as the predominant methanol dehydrogenase in the type I methanotroph Methylomicrobium buryatense. J Bacteriol 198:1317–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn F (1870) Uber den Brunnenfaden (Crenothrix polyspora) mig Bemerkungen ber die mikroskopische analyse des Brunnenwassers. Beitrage zur Biologie der Pflanzen 1:108–131

    Google Scholar 

  • Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, Holmes AJ (2012) Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J 6:171–182

    Article  CAS  PubMed  Google Scholar 

  • Costello AM, Auman AJ, Macalady JL, Scow KM, Lidstrom ME (2002) Estimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4:443–450

    Article  CAS  PubMed  Google Scholar 

  • Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151

    Article  CAS  PubMed  Google Scholar 

  • Csaki R, Hanczar T, Bodrossy L, Murrell JC, Kovacs KL (2001) Molecular characterisation of structural genes encoding for a membrane bound hydrogenase in Methylococcus capsulatus (Bath). FEMS Microbiol Lett 205:203–207

    Article  CAS  PubMed  Google Scholar 

  • Csaki R, Bodrossy L, Klemm J, Murrell JC, Kovacs KL (2003) Cloning, sequencing and mutational analysis of genes involved in the copper dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath). Microbiol (UK) 149:1785–1795

    Article  CAS  Google Scholar 

  • Dalton H (2005) The Leeuwenhoek Lecture 2000. The natural and unnatural history of methane oxidizing bacteria. Philos Trans R Soc Lond Ser B Biol Sci 360:1207–1222

    Article  CAS  Google Scholar 

  • Dam B, Dam S, Kube M, Reinhardt R, Liesack W (2012) Complete genome sequence of Methylocystis sp. strain SC2, an aerobic methanotroph with high-affinity methane oxidation potential. J Bacteriol 194:6008–6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PLE, Trotsenko YA, Dedysh SN (2013) Methylomonas paludis sp. nov., the first acid tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol 63:2282–2289

    Article  CAS  PubMed  Google Scholar 

  • Davies SL, Whittenbury R (1970) Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol 61:227–232

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Dunfield PF (2014) Cultivation of methanotrophs. In: McGenity T, Timmis K, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer protocols handbooks. Springer-Ferlag, Berlin

    Google Scholar 

  • Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Knief C, Dunfield P (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedysh SN, Belova SE, Bodelier PL, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57:472–479

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Naumoff DG, Vorobev AV, Kyrpides N, Woyke T, Shapiro N, Crombie AT, Murrell JC, Kalyuzhnaya MG, Smirnova AV, Dunfield PF (2015) Draft genome sequence of Methyloferula stellata AR4, an obligate methanotroph possessing only a soluble methane monooxygenase. Genome Announc 3:e01555–e01514

    Article  PubMed  PubMed Central  Google Scholar 

  • del Cerro C, García JM, Rojas A, Tortajada M, Ramón D, Galán B, Prieto MA, García JL (2012) Genome sequence of the methanotrophic poly-β-hydroxybutyrate producer Methylocystis parvus OBBP. J Bacteriol 194:5709–5710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deutzmann JS, Hoppert M, Schink B (2014) Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst Appl Microbiol 37:165–169

    Article  CAS  PubMed  Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–739

    Article  CAS  PubMed  Google Scholar 

  • Dunfield PF (2009) Methanotrophy in extreme environments. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0021897

    Chapter  Google Scholar 

  • Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  CAS  PubMed  Google Scholar 

  • Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664

    Article  CAS  PubMed  Google Scholar 

  • Dworkin M, Foster JW (1956) Studies on Pseudomonas methanica (Söhngen) nov. comb. J Bacteriol 72:649–659

    Google Scholar 

  • Edwards CR, Onstott TC, Miller JM, Wiggins JB, Wang W, Lee C, Cary SC, Pointing SB, Lau MCY (2017) Draft genome sequence of uncultured upland soil cluster gammaproteobacteria gives molecular insights into high-affinity methanotrophy. Genome Announc 5:e0047–e0017

    Google Scholar 

  • Eller G, Frenzel P (2001) Changes in activity and community structure of methane oxidizing bacteria over the growth period of rice. Appl Environ Microbiol 67:2395–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, Grasby SE, Brady AL, Dong H, Briggs BR, Li WJ, Goudeau D, Malmstrom R, Pati A, Pett-Ridge J, Rubin EM, Woyke T, Kyrpides NC, Ivanova NN (2016) Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 7:10476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase:the ethylmalonyl-CoA pathway. Proc Natl Acad Sci U S A 104:10631–10636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erikstad H-A, Birkeland N-K (2015) Draft genome sequence of “Candidatus Methylacidiphilum kamchatkense” strain Kam1, a thermoacidophilic methanotrophic verrucomicrobium. Genome Announc 3:e00065–e00015

    Article  PubMed  PubMed Central  Google Scholar 

  • Eshinimaev BT, Medvedkova KA, Khmelenina VN, Suzina NE, Osipov GA, Lysenko AM, Trotsenko YA (2004) New thermophilic methanotrophs of the genus Methylocaldum. Mikrobiologiia (Moscow) 73:530–539

    Google Scholar 

  • Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MS, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  • Flynn JD, Hirayama H, Sakai Y, Dunfield PF, Klotz MG, Knief C, Op den Camp HJ, Jetten MS, Khmelenina VN, Trotsenko YA, Murrell JC, Semrau JD, Svenning MM, Stein LY, Kyrpides N, Shapiro N, Woyke T, Bringel F, Vuilleumier S, DiSpirito AA, Kalyuzhnaya MG (2016) Draft genome sequences of Gammaproteobacterial methanotrophs isolated from marine ecosystems. Genome Announc 4:e01629–e01615

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster JW, Davis RH (1966) A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J Bacteriol 91:1924–1931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frindte K, Kalyuzhnaya MG, Bringel F, Dunfield PF, Jetten MSM, Khmelenina VN, Klotz MG, Murrell JC, Op den Camp HJM, Sakai Y, Semrau JD, Shapiro N, DiSpirito AA, Stein LY, Svenning MM, Trotsenko YA, Vuilleumier S, Woyke T, Knief C (2017) Draft genome sequences of two Gammaproteobacterial methanotrophs isolated from rice ecosystems. Genome Announc 5:e00526–e00517

    Article  PubMed  PubMed Central  Google Scholar 

  • Geymonat E, Ferrando L, Tarlera SE (2011) Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field. Int J Syst Evol Microbiol 61:2568–2572

    Article  PubMed  Google Scholar 

  • Gu W, Farhan Ul Haque M, DiSpirito AA, Semrau JD (2016) Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 363: pii: fnw129

    Google Scholar 

  • Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241

    Article  CAS  PubMed  Google Scholar 

  • Hamilton R, Kits KD, Ramonovskaya VA, Rozova ON, Yurimoto H, Iguchi H, Khmelenina VN, Sakai Y, Dunfield PF, Klotz MG, Knief C, Op den Camp HJ, Jetten MS, Bringel F, Vuilleumier S, Svenning MM, Shapiro N, Woyke T, Trotsenko YA, Stein LY, Kalyuzhnaya MG (2015) Draft genomes of Gammaproteobacterial methanotrophs isolated from terrestrial ecosystems. Genome Announc 3:e00515-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Cai C, Wang J, Xu X, Zheng P, Jetten MS, Hu B (2016) A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep 6:32241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henard CA, Guarnieri MT (2018) Metabolic engineering of methanotrophic bacteria for industrial biomanufacturing. In “Methane Biocatalysis: Paving the Way to Sustainability” (Ed. Kalyuzhnaya M.G., Xing XH). Springer. Pp. 117–132

    Chapter  Google Scholar 

  • Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826

    Article  CAS  PubMed  Google Scholar 

  • Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61:2646–2653

    Article  CAS  PubMed  Google Scholar 

  • Hirayama H, Fuse H, Abe M, Miyazaki M, Nakamura T, Nunoura T, Furushima Y, Yamamoto H, Takai K (2013) Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. Int J Syst Evol Microbiol 63:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Hirayama H, Abe M, Miyazaki M, Nunoura T, Furushima Y, Yamamoto H, Takai K (2014) Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int J Syst Evol Microbiol 64:989–999

    Article  CAS  PubMed  Google Scholar 

  • Hoefman S, Heylen K, De Vos P (2014a) Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank. Int J Syst Evol Microbiol 64:1210–1217

    Article  CAS  PubMed  Google Scholar 

  • Hoefman S, van der Ha D, Iguchi H, Yurimoto H, Sakai Y, Boon N, Vandamme P, Heylen K, De Vos P (2014b) Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water. Int J Syst Evol Microbiol 64:2100–2107

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2011) Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 61:810–815

    Article  CAS  PubMed  Google Scholar 

  • Im J, Lee SW, Yoon S, Dispirito AA, Semrau JD (2010) Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep 3(2):174–181

    Article  PubMed  CAS  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen Ø, Birkeland N-K (2008) Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 105:300–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyuzhnaya MG, S. Yang S, Rozova ON,  Smalley NE, Clubb J, Lamb A, Gowda GNA, Raftery D, Fu Y, BringelF, Vuilleumier S, Beck DAC, Trotsenko YA, Khmelenina NV, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Com 4:2785

    Google Scholar 

  • Kalyuzhnaya MG (2016) Methane biocatalysis: selecting the right microbe. In: Eckert C, Trinh CT (eds) Biotechnology for biofuel production and optimization. Elsevier, Amsterdam, pp 353–383

    Chapter  Google Scholar 

  • Kalyuzhnaya MG, Khmelenina VN, Suzina NE, Lysenko AM, Trotsenko YA (1999) New methanotrophic isolates from soda lakes of the southern Transbaikal region. Mikrobiologiia (Moscow) 68:677–685

    Google Scholar 

  • Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H, Lidstrom M, Trotsenko Y (2008) Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Int J Syst Evol Microbiol 58:591–596

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Lamb AE, McTaggart TL, Oshkin IY, Shapiro N, Woyke T, Chistoserdova L (2015a) Draft genome sequences of Gammaproteobacterial methanotrophs isolated from Lake Washington sediment. Genome Announc 3(2):e00103–e00115

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalyuzhnaya MG, Puri A, Lidstrom ME (2015b) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152

    Article  CAS  PubMed  Google Scholar 

  • Keltjens JT, Pol A, Reimann J, den Camp HJMO (2014) PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 98:6163–6183

    Article  CAS  PubMed  Google Scholar 

  • Kenney GE, Goering AW, Ross MO, DeHart CJ, Thomas PM, Hoffman BM, Kelleher NL, Rosenzweig AC (2016) Characterization of Methanobactin from Methylosinus sp. LW4. J Am Chem Soc 138:11124–11127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJ (2011) Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalifa A, Lee CG, Ogiso T, Ueno C, Dianou D, Demachi T, Katayama A, Asakawa S (2015) Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere. Int J Syst Evol Microbiol 65:3527–3534

    Article  CAS  PubMed  Google Scholar 

  • Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35:257–261

    Article  CAS  Google Scholar 

  • Khmelenina VN, Suzina NE, Dedysh SN, Liesack W, Trotsenko YA, Tiedje JM, Semrau JD (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int. J Sys Evol Microbiol 52:251–261

    Google Scholar 

  • Khmelenina VN, Beck DA, Munk C, Davenport K, Daligault H, Erkkila T, Goodwin L, Gu W, Lo CC, Scholz M, Teshima H, Xu Y, Chain P, Bringel F, Vuilleumier S, Dispirito A, Dunfield P, Jetten MS, Klotz MG, Knief C, Murrell JC, Op den Camp HJ, Sakai Y, Semrau J, Svenning M, Stein LY, Trotsenko YA, Kalyuzhnaya MG (2013a) Draft genome sequence of Methylomicrobium buryatense strain 5G, a haloalkaline-tolerant methanotrophic bacterium. Genome Announc 1:e00053-13-e00053-13

    Article  Google Scholar 

  • Khmelenina VN, Suzina NE, Trotsenko YA (2013b) Surface layers of methanotrophic bacteria. Mikrobiogiia (Moscow) 82:515–527

    CAS  Google Scholar 

  • Kits KD, Kalyuzhnaya MG, Klotz MG, Jetten MS, Op den Camp HJ, Vuilleumier S, Bringel F, Dispirito AA, Murrell JC, Bruce D, Cheng JF, Copeland A, Goodwin L, Hauser L, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T, Zeytun A, Stein LY (2013) Genome sequence of the obligate gammaproteobacterial methanotroph Methylomicrobium album strain BG8. Gen. Announ.1:  e0017013. https://doi.org/10.1128/genomeA.00170-13

  • Kleiveland CR, Hult LT, Kuczkowska K, Jacobsen M, Lea T, Pope PB (2012) Draft genome sequence of the methane-oxidizing bacterium Methylococcus capsulatus (Texas). J Bacteriol 194:6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawton TJ, Rosenzweig AC (2016) Biocatalysts for methane conversion: big progress on breaking a small substrate. Curr Opin Chem Biol 35:142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lidstrom ME (2006) Aerobic methylotrophicpProkaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: volume 2: ecophysiology and biochemistry. Springer New York, New York, pp 618–634

    Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315

    Article  CAS  PubMed  Google Scholar 

  • Medvedkova KA, Khmelenina VN, Trotsenko YA (2007) Sucrose as a factor of thermal adaptation of the thermophilic methanotroph Methylocaldum szegediense O-12. Mikrobiologiia (Moscow) 76:567–569

    CAS  Google Scholar 

  • Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MM, Schubert CJ (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 9:1991–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225

    Article  CAS  PubMed  Google Scholar 

  • Nyerges G, Han SK, Stein LY (2010) Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl Environ Microbiol 76:5648–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldenhuis R, Vink RL, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic-hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55(11):2819–2826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omel’chenko MV, Vasil’eva LV, Zavarzin GA, Savel’eva ND, Lysenko AM, Miytushina LL, Khmelenina VN, Trotsenko YA (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Mikrobiologiia (Moscow) 65:384–389

    Google Scholar 

  • Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. 2019. Phylogenomic analysis of the gammaproteobacterial methanotrophs (order Methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol. 9:3162. https://doi.org/10.3389/fmicb.2018.03162

  • Osborne CD, Haritos VS (2018) Horizontal gene transfer of three co-inherited methane monooxygenase systems gave rise to methanotrophy in the Proteobacteria. Mol Phylogenet Evol. https://doi.org/10.1016/j.ympev.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  • Oswald K, Graf JS, Littmann S, Tienken D, Brand A, Wehrli B, Albertsen M, Daims H, Wagner M, Kuypers MMM, Schubert CJ, Milucka J (2017) Crenothrix are major methane consumers in stratified lakes. ISME J 11:2124–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen JM, Dubilier N (2009) Methanotrophic symbioses in marine invertebrates. Environ Microbiol Rep 1(5):319–335

    Article  CAS  PubMed  Google Scholar 

  • Poehlein A, Deutzmann JS, Daniel R, Simeonova DD (2013) Draft genome sequence of the methanotrophic Gammaproteobacterium Methyloglobulus morosus DSM 22980 strain KoM1. Genome Announc 1:e01078–e01013

    PubMed  PubMed Central  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878

    Article  CAS  PubMed  Google Scholar 

  • Pol A, Barends TR, Dietl A, Khadem AF, Eygensteyn J, Jetten MS, Op den Camp HJ (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264

    Article  CAS  PubMed  Google Scholar 

  • Pratscher J, Vollmers J, Wiegand S, Dumont MG, Kaster AK (2018) Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ Microbiol 20:1016–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahalkar M, Bussmann I, Schink B (2007) Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int J Syst Evol Microbiol 57:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Rasigraf O, Kool DM, Jetten MS, Sinninghe Damsté JS, Ettwig KF (2014) Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 80:2451–2460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ricke P, Kube M, Nakagawa S, Erkel C, Reinhardt R, Liesack W (2005) First genome data from uncultured upland soil cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to Methylocapsa acidophila B2 and for high-affinity methanotrophy involving particulate methane monooxygenase. Appl Environ Microbiol 71:7472–7482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanovskaia VA, Liudvichenko ES, Sokolov IG, Malashenko IR (1980) Molecular nitrogen fixation by methane-oxidizing bacteria. Mikrobiologiia (Moscow) 42:683–688

    CAS  Google Scholar 

  • Ross MO, Rosenzweig AC (2017) A tale of two methane monooxygenases. J Biol Inorg Chem 22:307–319. https://doi.org/10.1007/s00775-016-1419-y

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Murrell JC (2008) Life in the extreme: thermophilic methanotrophy. Trends Microbiol 16:190–193

    Article  CAS  PubMed  Google Scholar 

  • Sharp CE, Smirnova AV, Kalyuzhnaya MG, Bringel F, Hirayama H, Jetten MS, Khmelenina VN, Klotz MG, Knief C, Kyrpides N, Op den Camp HJ, Reshetnikov AS, Sakai Y, Shapiro N, Trotsenko YA, Vuilleumier S, Woyke T, Dunfield PF (2015) Draft genome sequence of the moderately halophilic methanotroph Methylohalobius crimeensis strain 10Ki. Genome Announc 3:e00644–e00615

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharpe PL, DiCosimo D, Bosak MD, Knoke K, Tao L, Cheng Q Ye RW (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C 40 carotenoid synthesis. Appl Environ Microbiol 73:1721–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemist 54:2283–2294

    Article  CAS  Google Scholar 

  • Smith TJ, Murrell JC (2010) Methanotrophs. In: Encyclopedia of industrial biotechnology, pp 1–13. Wiley-Blackwell, Chicester, United Kingdom

    Google Scholar 

  • Smith KS, Costello AM, Lidstrom ME (1997) Methane and trichloroethylene oxidation by an estuarine methanotroph, Methylobacter sp. strain BB5.1. Applied and Environmental Microbiology, 63(11), 4617 LP-4620. Retrieved from http://aem.asm.org/content/63/11/4617.abstract

  • Starostina NG, Pashkova NI, Tsiomenko AB (1998) Detection and partial characterization of bacteriocin in the methanotrophic bacterium Methylobacter bovis. Biochemist 63:1122–1125

    CAS  Google Scholar 

  • Stein LY, Yoon S, Semrau JD, Dispirito AA, Crombie A, Murrell JC, Vuilleumier S, Kalyuzhnaya MG, Op den Camp HJ, Bringel F, Bruce D, Cheng JF, Copeland A, Goodwin L, Han S, Hauser L, Jetten MS, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T, Zeytun A, Klotz MG (2010) Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol 192:6497–6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein LY, Bringel F, DiSpirito AA, Han S, Jetten MS, Kalyuzhnaya MG, Kits KD, Klotz MG, Op den Camp HJ, Semrau JD, Vuilleumier S, Bruce DC, Cheng JF, Davenport KW, Goodwin L, Han S, Hauser L, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T (2011) Genome sequence of the methanotrophic Alphaproteobacterium, Methylocystis sp. Rockwell (ATCC 49242). J Bacteriol 193:2668–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoecker K, Bendinger B, Schöning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci U S A 103:2363–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP (2016) A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 215:314–323

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Zhang X, Xia FF, Zhang QQ, Kong JY, Wang J, He R (2014) Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems. Syst Appl Microbiol 37:200–207

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Kamagata Y, Oshima K, Hanada S, Tamaki H, Marumo K, Maeda H, Nedachi M, Hattori M, Iwasaki W, Sakata S (2014) Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum. Int J Syst Evol Microbiol 64:3240–3246

    Article  CAS  PubMed  Google Scholar 

  • Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3:91–100

    Article  CAS  PubMed  Google Scholar 

  • Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS, Connon SA, Orphan VJ (2015) Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the ‘deep sea-1’ clade of marine methanotrophs. Int J Syst Evol Microbiol 65:251–259

    Article  CAS  PubMed  Google Scholar 

  • Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs KU, Jensen GJ, Dubilier N, Orphan VJ (2016) Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Mol Microbiol 103:242–252

    Article  PubMed  CAS  Google Scholar 

  • Theisen AR, Ali HM, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methylotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  PubMed  Google Scholar 

  • Tsubota J, Eshinimaev B, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884

    Article  CAS  PubMed  Google Scholar 

  • van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MS, Op den Camp HJ, van Niftrik L (2014) Expanding the Verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 80:6782–6791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vekeman B, Dumolin C, De Vos P, Heylen K (2017) Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition. Antonie Van Leeuwenhoek 110:281–289

    Article  CAS  PubMed  Google Scholar 

  • Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, Massardo DR, Prati MV, De Bellis L, Alifano P (2007) Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium. Appl Environ Microbiol 73:3556–3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463

    Article  CAS  PubMed  Google Scholar 

  • Vorobev A, Jagadevan S, Jain S, Anantharaman K, Dick GJ, Vuilleumier S, Semrau JD (2014) Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol. Appl Environ Microbiol 80:3044–3052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vu HN, Subuyuj GA, Vijayakumar S, Good NM, Martinez-Gomez NC, Skovran E (2016) Lanthanide-dependent regulation of methanol oxidation systems in Methylobacterium extorquens AM1 and their contribution to methanol growth. J Bacteriol 198:1250–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S, Rouy Z, Op den Camp HJ, Jetten MS, Dispirito AA, Dunfield P, Klotz MG, Semrau JD, Stein LY, Barbe V, Médigue C, Trotsenko YA, Kalyuzhnaya MG (2012) Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. J Bacteriol 194:551–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI (2017) Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem Rev 117:8574–8621

    Article  CAS  PubMed  Google Scholar 

  • Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methé B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:e303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006a) Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78 degrees N). Int J Syst Evol Microbiol 56:109–113

    Article  CAS  PubMed  Google Scholar 

  • Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006b) Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78 degrees N). Int J Syst Evol Microbiol 56:541–547

    Article  CAS  PubMed  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970a) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    Article  CAS  PubMed  Google Scholar 

  • Whittenbury R, Davies SL, Davey JF (1970b) Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61:219–226

    Article  CAS  PubMed  Google Scholar 

  • Williams P, Coates L, Mohammed F, Gill R, Erskine P, Bourgeois D, Wood SP, Anthony C, Cooper JB (2006) The 1.6A X-ray structure of the unusual c-type cytochrome, cytochrome cL, from the methylotrophic bacterium Methylobacterium extorquens. J Mol Biol 357:151–162

    Article  CAS  PubMed  Google Scholar 

  • Wise MG, McArthur JV, Shimkets LJ (2001) Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs. Int J Syst Evol Microbiol 51:611–621

    Article  CAS  PubMed  Google Scholar 

  • Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28:335–352

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Matsen JB, Konopka M, Green-Saxena A, Clubb J, Sadilek M, Orphan VJ, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front Microbiol 3:70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina G. Kalyuzhnaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kalyuzhnaya, M.G., Gomez, O.A., Murrell, J.C. (2019). The Methane-Oxidizing Bacteria (Methanotrophs). In: McGenity, T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-60053-6_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60053-6_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60053-6

  • Online ISBN: 978-3-319-60053-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics