Skip to main content

Micropolar Crystal Plasticity

  • Reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

This chapter considers advances over the past 15 years achieved by the authors and coworkers on generalized crystal plasticity to address size and configuration effects in dislocation plasticity at the micron scale. The specific approaches addressed here focus on micropolar and micromorphic theories rather than adopting strain gradient theory as the starting point, as motivated by the pioneering ideas of Eringen (Eringen and Suhubi 1964; Eringen and Claus Jr 1969; Eringen 1999). It is demonstrated with examples that for isotropic elasticity and specific sets of slip systems, a dislocation-based formulation of micropolar or micromorphic type provides results comparable to discrete dislocation dynamics and has much in common with the structure of Gurtin’s slip gradient theory (Gurtin 2002; Gurtin et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaqus/Standard Version 6.7.1. Dassault Systèmes Simulia Corp. (2007)

    Google Scholar 

  • E. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)

    Article  Google Scholar 

  • A. Arsenlis, D.M. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47, 1597–1611 (1999)

    Article  Google Scholar 

  • M.F. Ashby, Deformation of plastically non-homogeneous materials. Philos. Mag. 21(170), 399–424 (1970)

    Article  Google Scholar 

  • E. Bittencourt, A. Needleman, M.E. Gurtin, E. van der Giessen, A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech. Phys. Solids 51, 281–310 (2003)

    Article  MathSciNet  Google Scholar 

  • P. Cermelli, M. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001)

    Article  Google Scholar 

  • J. Clayton, D. Bamman, D. McDowell, A geometric framework for the kinematics of crystals with defects. Philos. Mag. 85, 3983–4010 (2005)

    Article  Google Scholar 

  • H.H.M. Cleveringa, E. van der Giessen, A. Needleman, Comparison of discrete dislocation and continuum plasticity predictions for a composite material. Acta Mater. 45, 3163–3179 (1997)

    Article  Google Scholar 

  • H.H.M. Cleveringa, E. van der Giessen, A. Needleman, A discrete dislocation analysis of residual stresses in a composite material. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech Prop 79, 893–920 (1999)

    MATH  Google Scholar 

  • B.D. Coleman, M.E. Gurtin, Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)

    Article  Google Scholar 

  • N.M. Cordero, A. Gaubert, S. Forest, E.P. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two–phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010)

    Article  MathSciNet  Google Scholar 

  • A. Eringen, Microcontinuum Field Theories I: Foundations and Solids (Springer, New York, 1999)

    Book  Google Scholar 

  • A.C. Eringen, W.D. Claus Jr., A micromorphic approach to dislocation theory and its relation to several existing theories. Technical Report TR-6, Princeton University Department of Aerospace and Mechanical Sciences (1969)

    Google Scholar 

  • A.C. Eringen, E.S. Suhubi, Nonlinear theory of simple micro-elastic solids-I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  Google Scholar 

  • L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401 (2004)

    Article  Google Scholar 

  • S. Forest, Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philos. Mag. 88, 3549–3563 (2008)

    Article  Google Scholar 

  • S. Forest, Generalized continuum modelling of crystal plasticity, in Generalized Continua and Dislocation Theory (Springer, Vienna, 2012), pp. 181–287

    Chapter  Google Scholar 

  • S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  Google Scholar 

  • S. Forest, G. Cailletaud, R.W. Sievert, A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch. Mech. 49, 705–736 (1997)

    MathSciNet  MATH  Google Scholar 

  • S. Forest, F. Barbe, G. Cailletaud, Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37(46), 7105–7126 (2000)

    Article  MathSciNet  Google Scholar 

  • P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  Google Scholar 

  • W. Günther, Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschw. Wiss. Ges. 10, 195–213 (1958)

    MATH  Google Scholar 

  • M.E. Gurtin, A gradient theory of single–crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)

    Article  MathSciNet  Google Scholar 

  • M.E. Gurtin, L. Anand, S.P. Lele, Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55, 1853–1878 (2007)

    Article  MathSciNet  Google Scholar 

  • E. Kröner, On the physical reality of torque stresses in continuum mechanics. Int. J. Eng. Sci. 1, 261–278 (1963)

    Article  Google Scholar 

  • E. Kröner, Initial studies of a plasticity theory based upon statistical mechanics, in Inelastic Behaviour of Solids, ed. by M. Kanninen, W. Adler, A. Rosenfield, R. Jaffee (McGraw-Hill, New York, 1969), pp. 137–147

    Google Scholar 

  • M. Kuroda, V. Tvergaard, A finite deformation theory of higher-order gradient crystal plasticity. J. Mech. Phys. Solids 56(8), 2573–2584 (2008)

    Article  MathSciNet  Google Scholar 

  • S. Limkumnerd, E. van der Giessen, Study of size effects in thin films by means of a crystal plasticity theory based on DiFT. J. Mech. Phys. Solids 56, 3304–3314 (2008)

    Article  Google Scholar 

  • J.R. Mayeur, Generalized continuum modeling of scale-dependent crystalline plasticity. Ph.D. thesis, Georgia Institute of Technology, 2010

    Google Scholar 

  • J.R. Mayeur, D.L. McDowell, Bending of single crystal thin films modeled with micropolar crystal plasticity. Int. J. Eng. Sci. 49, 1357–1366 (2011)

    Article  Google Scholar 

  • J.R. Mayeur, D.L. McDowell, An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear. J. Mech. Phys. Solids 61, 1935–1954 (2013)

    Article  MathSciNet  Google Scholar 

  • J.R. Mayeur, D.L. McDowell, A comparison of Gurtin type and micropolar theories of generalized single crystal plasticity. Int. J. Plast. 57, 29–51 (2014)

    Article  Google Scholar 

  • J.R. Mayeur, D.L. McDowell, Micropolar crystal plasticity simulation of particle strengthening. Model. Simul. Mater. Sci. Eng. 23, 065007 (2015)

    Article  Google Scholar 

  • J.R. Mayeur, D.L. McDowell, D.J. Bammann, Dislocation-based micropolar single crystal plasticity: comparison of multi- and single criterion theories. J. Mech. Phys. Solids 59, 398–422 (2011)

    Article  MathSciNet  Google Scholar 

  • H. Mecking, U.F. Kocks, Kinetics of flow and strain-hardening. Acta Metall. 29, 1865–1875 (1981)

    Article  Google Scholar 

  • J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  • B.D. Reddy, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity. Contin. Mech. Thermodyn. 23, 551–572 (2011)

    Article  MathSciNet  Google Scholar 

  • H. Schäfer, Eine Feldtheorie der Versetzungen im Cosserat-Kontinuum. Z. Angew. Math. Phys. 20, 891–899 (1969)

    Article  Google Scholar 

  • J.Y. Shu, N.A. Fleck, E. van der Giessen, A. Needleman, Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity. J. Mech. Phys. Solids 49, 1361–1395 (2001)

    Article  Google Scholar 

  • R. Sievert, S. Forest, R. Trostel, Finite deformation Cosserat-type modelling of dissipative solids and its application to crystal plasticity. J. Phys. IV 8, 357–364 (1998)

    Google Scholar 

  • C. Teodosiu, F. Sidoroff, A theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 14, 165–176 (1976)

    Article  Google Scholar 

  • S. Yefimov, E. van der Giessen, Multiple slip in a strain-gradient plasticity model motivated by a statistical-mechanics description of dislocations. Int. J. Solids Struct. 42, 3375–3394 (2005a)

    Article  Google Scholar 

  • S. Yefimov, E. van der Giessen, Size effects in single crystal thin films: nonlocal crystal plasticity simulations. Eur. J. Mech. A Solids 24, 183–193 (2005b)

    Article  Google Scholar 

  • S. Yefimov, I. Groma, E. van der Giessen, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52, 279–300 (2004a)

    Article  MathSciNet  Google Scholar 

  • S. Yefimov, E. van der Giessen, I. Groma, Bending of a single crystal: discrete dislocation and nonlocal crystal plasticity simulations. Model. Simul. Mater. Sci. Eng. 12, 1069 (2004b)

    Article  Google Scholar 

Download references

Acknowledgments

JRM acknowledges the support of Los Alamos National Laboratory, operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25936. This work benefited from the support of the Laboratory Directed Research and Development Early Career award 20150696ECR. DLM would like to acknowledge the support of the Carter N. Paden, Jr. Distinguished Chair in Metals Processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Forest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mayeur, J.R., McDowell, D.L., Forest, S. (2019). Micropolar Crystal Plasticity. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-58729-5_48

Download citation

Publish with us

Policies and ethics