Skip to main content

Finite Differences and Finite Elements in Nonlocal Fracture Modeling: A Priori Convergence Rates

  • Reference work entry
  • First Online:
Book cover Handbook of Nonlocal Continuum Mechanics for Materials and Structures
  • 1603 Accesses

Abstract

In this chapter we present a rigorous convergence analysis of finite difference and finite element approximation of nonlinear nonlocal models. In the previous chapter, we considered a differentiable version of the original bond-based model introduced in Silling (J Mech Phys Solids 48(1):175–209, 2000). There we showed, for a fixed horizon of nonlocal interaction πœ–, that well-posed formulations of the model can be developed over HΓΆlder spaces and Sobolev spaces. In this chapter we apply these formulations to show a priori convergence for the discrete finite difference and finite element methods. We show that the error made using the forward Euler in time and a finite difference (i.e., piecewise constant) discretization in space with time step Ξ”t and spatial discretization h is of the order of O( Δt + hβˆ•πœ– 2). For a central difference approximation in time and piecewise linear finite element approximation in space, the approximation error is of the order of O( Δt + h 2βˆ•πœ– 2). We point out these are the first such error estimates for nonlinear nonlocal fracture formulations and are reported in Jha and Lipton (2017b Numerical analysis of nonlocal fracture models models in holder space. arXiv preprint arXiv:1701.02818. To appear in SIAM Journal on Numerical Analysis 2018) and Jha and Lipton (2017a, Finite element approximation of nonlocal fracture models. arXiv preprint arXiv:1710.07661). We then go on to prove the stability of the semi-discrete approximation and show that the energy of the discrete approximation is bounded in terms of work done by the body force and initial energy put into the system. We look forward to improvements and development of a posteriori error estimation in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Agwai, I. Guven, E. Madenci, Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171(1), 65–78 (2011)

    ArticleΒ  Google ScholarΒ 

  • B. Aksoylu, T. Mengesha, Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31(12), 1301–1317 (2010)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • B. Aksoylu, ML Parks, Variational theory and domain decomposition for nonlocal problems. Appl. Math. Comput. 217(14), 6498–6515 (2011)

    MathSciNetΒ  Google ScholarΒ 

  • B. Aksoylu, Z. Unlu, Conditioning analysis of nonlocal integral operators in fractional sobolev spaces. SIAM J. Numer. Anal. 52, 653–677 (2014)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • L. Ambrosio, A. Coscia, G. Dal Maso, Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139, 201–238 (1997)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • D.N. Arnold, Lecture notes on numerical analysis of partial differential equations (2011), http://www.math.umn.edu/~arnold/8445/notes.pdf

  • E. Askari, F. Bobaru, R. Lehoucq, M. Parks, S. Silling, O. Weckner, Peridynamics for multiscale materials modeling. J Phys Conf Ser 125, 012078 (2008). IOP Publishing

    Google ScholarΒ 

  • G.A. Baker, Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13(4), 564–576 (1976)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • F. Bobaru, W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176(2), 215–222 (2012)

    ArticleΒ  Google ScholarΒ 

  • F. Bobaru, M. Yang, L.F. Alves, S.A. Silling, E. Askari, J. Xu, Convergence, adaptive refinement, and scaling in 1d peridynamics. Int. J. Numer. Meth. Eng. 77(6), 852–877 (2009)

    ArticleΒ  Google ScholarΒ 

  • X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Meth. Appl. Mech. Eng. 200(9), 1237–1250 (2011)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • K. Dayal, Leading-order nonlocal kinetic energy in peridynamics for consistent energetics and wave dispersion. J. Mech. Phys. Solids 105, 235–253 (2017)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • P. Diehl, R. Lipton, M. Schweitzer, Numerical verification of a bond-based softening peridynamic model for small displacements: deducing material parameters from classical linear theory. Institut fΓΌr Numerische Simulation Preprint, (2016)

    Google ScholarΒ 

  • Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Analysis of the volume-constrained peridynamic navier equation of linear elasticity. J. Elast. 113(2), 193–217 (2013a)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Q. Du, L. Tian, X. Zhao, A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J. Numer. Anal. 51(2), 1211–1234 (2013b)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Q. Du, K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM Math. Model. Numer. Anal. 45(2), 217–234 (2011)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Q. Du, Y. Tao, X. Tian, A peridynamic model of fracture mechanics with bond-breaking. J. Elast. (2017). https://doi.org/10.1007/s10659-017-9661-2

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • E. Emmrich, R.B. Lehoucq, D. Puhst, Peridynamics: a nonlocal continuum theory, in Meshfree Methods for Partial Differential Equations VI (Springer, Berlin/Heidelberg, 2013), pp. 45–65

    BookΒ  Google ScholarΒ 

  • E. Emmrich, O. Weckner, et al. On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity. Commun. Math. Sci. 5(4), 851–864 (2007)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • E. Emmrich, D. Puhst, A short note on modeling damage in peridynamics. J. Elast. 123, 245–252 (2016)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • J.T. Foster, S.A. Silling, W. Chen, An energy based failure criterion for use with peridynamic states. Int. J. Multiscale Comput. Eng. 9(6), 675–688 (2011)

    ArticleΒ  Google ScholarΒ 

  • W. Gerstle, N. Sau, S. Silling, Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237(12), 1250–1258 (2007)

    ArticleΒ  Google ScholarΒ 

  • M.J. Grote, D. SchΓΆtzau, Optimal error estimates for the fully discrete interior penalty dg method for the wave equation. J. Sci. Comput. 40(1), 257–272 (2009)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Q. Guan, M. Gunzburger, Stability and accuracy of time-stepping schemes and dispersion relations for a nonlocal wave equation. Numer. Meth. Partial Differ. Equ. 31(2), 500–516 (2015)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78(6), 1156–1168 (2011)

    ArticleΒ  Google ScholarΒ 

  • P.K. Jha, R. Lipton, Finite element approximation of nonlocal fracture models (2017a). arXiv preprint arXiv:1710.07661

    Google ScholarΒ 

  • P.K. Jha, R. Lipton, Numerical analysis of nonlocal fracture models models in holder space (2017b). arXiv preprint arXiv:1701.02818. To appear in SIAM Journal on Numerical Analysis 2018

    Google ScholarΒ 

  • P.K. Jha, R. Lipton, Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics (2017c). arXiv preprint arXiv:1707.00398. To appear in International Journal for Numerical Methods in Engineering 2018

    Google ScholarΒ 

  • S. Karaa, Stability and convergence of fully discrete finite element schemes for the acoustic wave equation. J. Appl. Math. Comput. 40(1–2), 659–682 (2012)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117(1), 21–50 (2014)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • R. Lipton, Cohesive dynamics and brittle fracture. J. Elast. 124(2), 143–191 (2016)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • R. Lipton, S. Silling, R. Lehoucq, Complex fracture nucleation and evolution with nonlocal elastodynamics (2016). arXiv preprint arXiv:1602.00247

    Google ScholarΒ 

  • R. Lipton, E. Said, P. Jha, Free damage propagation with memory. Journal of Elasticity, 1–25 (2018). https://doi.org/10.1007/s10659-018-9672

  • D.J. Littlewood, Simulation of dynamic fracture using peridynamics, finite element modeling, and contact, in Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE) (2010)

    Google ScholarΒ 

  • R.W. Macek, S.A. Silling, Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43(15), 1169–1178 (2007)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • T. Mengesha, Q. Du, Analysis of a scalar peridynamic model with a sign changing kernel. Discrete Contin. Dynam. Syst. B 18, 1415–1437 (2013)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • T. Mengesha, Q. Du, Nonlocal constrained value problems for a linear peridynamic navier equation. J. Elast. 116(1), 27–51 (2014)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • S. Silling, O. Weckner, E. Askari, F. Bobaru, Crack nucleation in a peridynamic solid. Int. J. Fract. 162(1–2), 219–227 (2010)

    ArticleΒ  Google ScholarΒ 

  • S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • X. Tian, Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52(4), 1641–1665 (2014)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • X. Tian, Q. Du, M. Gunzburger, Asymptotically compatible schemes for the approximation of fractional laplacian and related nonlocal diffusion problems on bounded domains. Adv. Comput. Math. 42(6), 1363–1380 (2016a)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • X. Tian, Q. Du, M. Gunzburger, Asymptotically compatible schemes for the approximation of fractional laplacian and related nonlocal diffusion problems on bounded domains. Adv. Comput. Math. 42(6), 1363–1380 (2016b)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • O. Weckner, E. Emmrich, Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar. J. Comput. Appl. Mech. 6(2), 311–319 (2005)

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  • G. Zhang, Q. Le, A. Loghin, A. Subramaniyan, F. Bobaru, Validation of a peridynamic model for fatigue cracking. Eng. Fract. Mech. 162, 76–94 (2016)

    ArticleΒ  Google ScholarΒ 

Download references

Acknowledgements

This material is based upon work supported by the US Army Research Laboratory and the US Army Research Office under contract/grant number W911NF1610456.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lipton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Β© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jha, P.K., Lipton, R. (2019). Finite Differences and Finite Elements in Nonlocal Fracture Modeling: A Priori Convergence Rates. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-58729-5_44

Download citation

Publish with us

Policies and ethics