Skip to main content

Micro-remediation of Metals: A New Frontier in Bioremediation

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

Microbial remediation is an innovative technique which aims toward decontamination of polluted sites through metal immobilization. This approach would make lesser availability of heavy metals to living system. It was found that precipitation and transformation through metabolic activity of microbes are very much useful in this context. Such process reduces the hazards of metal pollution. Use of living organisms for decontamination of pollutions has got holistic approach including various microbes, algae, fungi, higher plant process known as bioremediation. From microbes perspectives, various processes such as promoting indigenous microbial population for decontamination, exogenous input of microbes for decontamination purpose, utilization of microbial strain for sequestering pollutants as well as metal immobilization through microbial biomass are available. Metals have diverse source of contamination by anthropogenic mode. Metal biotransformation is the principle mechanism of microbial remediation for decontaminating environment. It involves processes such as cell membrane transport, physical adsorption, and ion exchange complexation and biosorption. Diverse microbial groups such as plant growth-promoting rhizobacteria or PGPR actively participate in metal decontamination process. Metal-microbe interaction for heavy metal removal includes processes such as bioleaching, bioaccumulations biotransformation, biomineralization, and biosorption. Metal resistance of microbes involves expolymer binding, siderophore and biosurfactant complexation, metal precipitation, and metal-dependent mechanism of metal resistance. Biotransformation of metal cations involves bacterial cell-mediated biologically catalyzed immobilization and solubilization process by diverse group of microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  Google Scholar 

  • Achal V, Pan X, Fu Q, Zhang D (2012a) Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201–202:178–184

    Article  Google Scholar 

  • Achal V, Pan X, Zhang D (2012b) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89:764–768

    Article  Google Scholar 

  • Adams JA, Reddy KR (2003) Extent of benzene biodegradation in saturated soil column during air sparging. Ground Water Monit Remediat 23(3):85–94

    Article  Google Scholar 

  • Akar T, Tunali S, Cabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136:389–406

    Article  Google Scholar 

  • Alloway BJ (1990) Heavy metals in soils. Blackie and Son Ltd., Glasgow

    Google Scholar 

  • Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98:3149–3153

    Article  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  Google Scholar 

  • Baldwin BR, Peacock AD, Park M, Ogles DM, Istok JD, Mc Kinley JP, Resch CT, White DC (2008) Multilevel samplers as microcosms to assess microbial response to biostimulation. Ground Water 46:295–304

    Article  Google Scholar 

  • Barns SM, Nierzwicki-Bauer SA (1997) Microbial diversity in ocean, surface and subsurface environments. Rev Mineral Geochem 35:35–79

    Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250

    Article  Google Scholar 

  • Blindauer CA, Harrison MD, Robisnson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432

    Article  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr and Pb contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  Google Scholar 

  • Brim H, McFarlan SC, Ferdickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Natl Biotech 8:85–90

    Article  Google Scholar 

  • Brim H, Venkateshwaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582

    Article  Google Scholar 

  • Brim H, Osborne JP, Kostandarithes HM, Fredrickson JK, Wackett LP, Daly MJ (2006) Deinococcus radiodurans engineered for complete toluene degradation facilities Cr(IV) reduction. Microbiology 152:2469–2477

    Article  Google Scholar 

  • Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personne JC (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage water of Carnoulès, France. Appl Environ Microbiol 72:551–556

    Article  Google Scholar 

  • Cao S, Duan X, Zhao X, Ma J, Dong T, Huang N, Sun C, He B, Wei F (2014) Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Sci Total Environ 472:1001–1009

    Article  Google Scholar 

  • Chang YJ, Peacock AD, Lang PE, Stephen JR, McKinley JP, MacNaughton SJ, Hussain AKMA, Saton AM, White D (2001) Diversity and characterization of sulphate reducing bacteria in groundwater uranium mill tailings site. Appl Environ Microbiol 67:3149–3160

    Article  Google Scholar 

  • Chen JZ, Tao XC, Xu J, Zhang T, Liu ZL (2005a) Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column. Process Biochem 40:3675–3679

    Article  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005b) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf A Physicochem Eng Asp 46:101–107

    Google Scholar 

  • Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X (2013) Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials 34:1364–1371

    Article  Google Scholar 

  • Cheng SS, Hsieh TL, Pan PT, Gaop CH, Chang LH, Whang LM, Chang TC (2009) Study on biomonitoring of aged TPH contaminated soil with bioaugmentation and biostimulation (Conference paper). 10th International in situ and on-site bioremediation symposium, Baltimore, 5–8 May 2009

    Google Scholar 

  • Choudhary S, Sar P (2011) Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J Hazard Mater 186:336–343

    Article  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: role in heavy metals detoxification and homeostatis. Annu Rev Plant Biol 53:159–182

    Article  Google Scholar 

  • D’Annibale A, Leonardi V, Federici E, Baldi F, Zecchini F, Petruccioli M (2007) Leaching and microbial treatment of a soil contaminated by sulphide ore ashes and aromatic hydrocarbons. Appl Microbiol Biotechnol 74:1135–1144

    Article  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169

    Google Scholar 

  • de Jing Y, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8(3):192–207

    Article  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143(1–2):220–225

    Article  Google Scholar 

  • Dudhane M, Borde M, Jite PK (2012) Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea Roxb inoculated with AM fungi. Int J Phytoremediation 14(7):643–655

    Article  Google Scholar 

  • Dungan RS, Frankenberger WT Jr (2000) Factors affecting the volatalisation of dimethyl selenide by Enterobacter cloacae SLD 1a-1. Soil Biol Biochem 32:1353–1358

    Article  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  Google Scholar 

  • El-Jaoual T, Cox DA (1998) Manganese toxicity in plants. J Plant Nutr 21:353–386

    Article  Google Scholar 

  • Elvin CM, Hardy CM, Rosenberg H (1987) Molecular studies on the phosphate inorganic transport system of Escherichia coli. In: Torriani-Gorini A, Rothmann FG, Silver S, Wright A, Yagil E (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, DC, pp 156–158

    Google Scholar 

  • EPA (2003) Underground storage tanks. www.epa.gov/swerust1/ustsystm/erpdoc.pdf

  • Ercole C, Veglio F, Toro L, Ficara G, Lepidi A (1994) Immobilisation of microbial cells for metal adsorption and desorption. In: Mineral bioprocessing II. Snowboard, Utah

    Google Scholar 

  • Ernst (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80:251–274

    Google Scholar 

  • Errasquin EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  • Essa AMM, Macaskie LE, Brown NL (2002) Mechanisms of mercury bioremediation. Biochem Soc Trans 30:672–674

    Article  Google Scholar 

  • Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K (2009) Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res 3:35–48

    Google Scholar 

  • Favero N, Costa P, Massimino ML (1991) In vitro uptake of cadmium by basidiomycete Pleurotus ostreatus. Biotechnol Lett 10:701–704

    Article  Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328

    Article  Google Scholar 

  • Fiset JF, Blais JF, Riverso PA (2008) Review on the removal of metal ions from effluents using seaweeds, alginate derivatives and other sorbents. Rev Sci Eau 21(3):283–308

    Google Scholar 

  • Fredrickson JK, Onstott TC (1996) Microbes deep inside the earth. Sci Am 275:68–73

    Article  Google Scholar 

  • Gabriel J, Mokrejs M, Bily J, Rychlovsky P (1994) Accumulation of heavy metal by some Woodrooting fungi. Folia Microbiol 39:115–118

    Article  Google Scholar 

  • Gabriel J, Kofronova O, Rychlovsky P, Krenzelok M (1996) Accumulation and effect of cadmium in the wood rotting basidiomycete, Daedalea quercina. Bull Environ Contam Toxicol 57:383–390

    Article  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  Google Scholar 

  • Gao S, Burau RG (1997) Environmental factors affecting rates of arsine evolution from and mineralization of arsenicals in soil. J Environ Qual 26:753–763

    Article  Google Scholar 

  • Gareth ME, Furlong JC (2003) Environmental biotechnology; theory and application. Wiley, Chichester

    Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1999) Assessing risks of heavy metal toxicity in agricultural soils. Hum Ecol Risk Assess 5:683–689

    Article  Google Scholar 

  • Girno E, Masaru N, Chieh-Chen H, Simon S (2002) Microbial heavy metal resistance transposons and plasmids. Potential use for environmental. Biotechnology 2(2):71–82

    Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth–promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gomez Jiménez TR, Moliternib E, Rodríguezb L, Fernándezc FJ, Villaseñorc J (2011) Feasibility of mixed enzymatic complexes to enhanced soil bioremediation processes. Procedia Environ Sci 9:54–59

    Article  Google Scholar 

  • Govarthanan M, Lee KJ, Cho M, Kim JS, Kamala-Kannan S, Oh BT (2013) Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere 8:2267–2272

    Article  Google Scholar 

  • Guine V, Martins JMF, Causse B, Durand A, Gaudet JP, Spadini L (2007) Effect of cultivation and experimental conditions on the surface reactivity of the metal-resistant bacteria Cupriavidus metallidurans CH34 to protons, cadmium and zinc. Chem Geol 236:266–280

    Article  Google Scholar 

  • Gunasekaran P, Muthukrishnan J, Rajendran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944

    Google Scholar 

  • Gunawardana WB, Singhal N, Johnson A (2010) Amendments and their combined application for enhanced copper, cadmium, lead uptake by Lolium perenne. Plant Soil 329:283–294

    Article  Google Scholar 

  • Guo Z, Megharaj M, Beer M, Ming H, Rahman MM, Wu W, Naidu R (2009) Heavy metal impact on bacterial biomass based on DNA analysis and uptake by wild plants in the abandoned copper mine soils. Bioresour Technol 100:3831–3836

    Article  Google Scholar 

  • Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78:967–973

    Google Scholar 

  • Hadis G, Mehran H, Arezoo T, Mohammad MG (2011) Investigation of bioremediation of arsenic by bacteria isolated from contaminated soil. Afr J Microbiol Res 5(32):5899–5895

    Google Scholar 

  • Hantke K (2005) Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:196–202

    Article  Google Scholar 

  • Hassen A, Saidi N, Cherif M, Boudabous A (1998) Resistance of environmental bacteria to heavy metals. Bioresour Technol 64:7–15

    Article  Google Scholar 

  • Hayrynen P, Landaburu JA, Pongracz E, Keiski RL (2012) Study of permeate flux in micellar-enhanced ultrafiltration on a semi-pilot scale: simultaneous removal of heavy metals from phosphorous rich real wastewaters. Separ Purif Technol 93(1):59–66

    Article  Google Scholar 

  • Hetzer A, Daughney CJ, Morgan HW (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl Environ Microbiol 72:4020–4027

    Article  Google Scholar 

  • Hinsinger P, Courchesne F (2008) Biogeochemistry of metals and metalloids at the soil–root interface. In: Violante A, Huang PM, Gadd GM (eds) Biophysico–chemical processes of heavy metals and metalloids in soil environments. Wiley, Hoboken, pp 267–311

    Google Scholar 

  • Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7:177–187

    Article  Google Scholar 

  • Hussein H, Farag S, Kandil K, Moawad H (2005) Resistance and of heavy metals by pseudomonas. Process Biochem 40:955–961

    Article  Google Scholar 

  • Irma S, Uzma GRS, Ara T (2013) Bioremediation of heavy metals using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. Int Res J Biol Sci 2(12):66–73

    Google Scholar 

  • Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol Biochem 37:2319–2322

    Article  Google Scholar 

  • Jin Hee P, Dane L, Periyasamy P, Chhopala G, Bolan N, Jae WC (2011) Role of organic amendments on enhanced bioremediation of heavy metal (loid)contaminated soils. J Hazard Mater 185(2–3):549–574

    Google Scholar 

  • Jjemba PK (2004) Environmental microbiology principles and applications. Science Publishers, Enfield

    Google Scholar 

  • Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    Article  Google Scholar 

  • Kamaludeen SPB, Arunkumar R, Avudainayagam S, Ramasamy K (2003) Bioremediation of chromium contaminated environments. Ind J Expt Biol 41:972–985

    Google Scholar 

  • Kamnev AA, Vander L (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20(4):239–258

    Article  Google Scholar 

  • Kang SH, Singh S, Kim JY, Lee W (2007) Mulchandani, A.; Chen, W. Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73:6317–6320

    Article  Google Scholar 

  • Kelly DJA, Budd K, Lefebvre DD (2006) The biotransformation of mercury in pH-stat cultures of microfungi. Can J Bot 84:254–260

    Article  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  Google Scholar 

  • Kim S, Park CB (2013) Bio-inspired synthesis of minerals for energy, environment and medicinal applications. Adv Funct Mater 23:10–25

    Article  Google Scholar 

  • Kim TW, Slowing II, Chung PW, Lin VSY (2010) Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules. ACS Nano 5:360–365

    Article  Google Scholar 

  • Komori K, Wang P, Toda K, Ohtake H (1989) Factors affecting chromate reduction in Enterobacter cloacae strain HO1. Appl Microbiol Biotechnol 31:567–570

    Article  Google Scholar 

  • Komori K, Rivas R, Toda K, Ohtake H (1990) Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol Bioeng 35:951–954

    Article  Google Scholar 

  • Kuiters AT, Mulder W (1993) Water–soluble organic matter in forest soils. Plant Soil 152:215–235

    Article  Google Scholar 

  • Kumar Sharma R, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66:258–266

    Article  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Left 10(2):137–142

    Article  Google Scholar 

  • Lado LR, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma 148:189–199

    Article  Google Scholar 

  • Landaburu-Aguirre J, Pongracz E, Sarpola A, Keiski RL (2012) Simultaneous removal of heavy metals from phosphorous rich real wastewaters by micellar-enhanced ultrafiltration. Separ Purif Technol 88:130–137

    Article  Google Scholar 

  • Lasat HA (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31(1):109–120

    Article  Google Scholar 

  • Li M, Cheng X, Guo H (2013) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegrad 76:81–85

    Article  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  Google Scholar 

  • Lloyd JR, Mabbett AN, Williams DR, Macaskie LE (2001) Metal reduction by sulphate reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy 59:327–337

    Article  Google Scholar 

  • Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44

    Article  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    Google Scholar 

  • Lovley DR, Philips EF, Lonargan DJ (1989) Hydrogen and formate oxidation couple to dissimilatory reduction of iron and manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55:700–706

    Google Scholar 

  • Lovley DR, Philips EJ, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen, nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2009) Environmental microbiology. Academic Press, SanDiego

    Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  Google Scholar 

  • Marazioti C (1998) Heavy metal tolerance and uptake by soil bacteria. Institute of BioScience and Technology: Cranfield University, Cranfield

    Google Scholar 

  • Mehboob I, Zahir ZA, Arshad M, Tanveer A, Farooq EA (2011) Growth promoting activities of different rhizobium spp. in wheat. Pak J Bot 43:1643–1650

    Google Scholar 

  • Mejare M, Bulow L (2001) Metal binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  Google Scholar 

  • Miller RM (1995) Biosurfactant-facilitated remediation of metal-contaminated soils. Environ Health Perspect 103:59–62

    Article  Google Scholar 

  • Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43:1162–1222. https://doi.org/10.1080/10934529.2011.627044

    Article  Google Scholar 

  • Moffet BF, Nicholson FA, Uwakwe NC, Chambers BJ, Harris JA, Hill TCJ (2003) Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol Ecol 43:13–19

    Article  Google Scholar 

  • Muhammad, Edyvean (2007) Ability of loofa sponge – immobilized fungal biomass to remote lead ions from aqueous solution. Pak Bot 39(1):231–238

    Google Scholar 

  • Mulligan CN, Raymond NY, Gibbs BE (2001a) Heavy metal removal from sediments by biosurfactants. J. Hazardous Materials 85:112–125

    Google Scholar 

  • Narayanan M, Natrajan D (2011) Bioremediation on effluents from magnesite and bauxite mines using Thiobacillus Spp and Pseudomonas Spp. Bioremediation Biodegradation 2(1):115. https://doi.org/10.4172/2155-6199.1000115

    Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  Google Scholar 

  • Nikunen E, Leinonen R, Kultamaa A (1990) Environmental properties of chemicals. Minist Environ, Environ Protect Dep, Res Rep 91:885–889

    Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  Google Scholar 

  • Perez-de-Mora A, Burgos P, Madejon E, Cabrera F, Jaeckel P, Schloter M (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem 38:327–341

    Article  Google Scholar 

  • Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Article  Google Scholar 

  • Pongratz R, Heumann KG (1999) Production of methylated mercury, lead and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere 39:89–102

    Article  Google Scholar 

  • Purakayastha T, Chhonkar P (2010) Phytoremediation of heavy metal contaminated soils. Soil Heavy Metals 19:389–429

    Google Scholar 

  • Ramasamy K (2000) Towards the better management of tannery waste contaminated soils, Conference Proceedings. ACAIR, Canberra

    Google Scholar 

  • Ramasamy RK, Congeevaram S, Thamaraiselvi K (2011) Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metals Pb(II) ions and fungal protein molecular characterization-a mycoremediation approach. Asian J Exp Biol 2(2):342–347

    Google Scholar 

  • Rani A (2009) Proteomic studies and functional characterization of cadmium resistant bacteria. PhD thesis, GB Pant University of Agriculture & Technology, Pantnagar

    Google Scholar 

  • Reith F, Rogers SL, McPhail DC, Weeb D (2006) Biomineralization of gold: biofilms on bacterioform gold. Science 313:233–236

    Article  Google Scholar 

  • Renella G, Mench M, Gelsomino A, Landi L, Nannipieri P (2005) Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biol Biochem 37:1498–1506

    Article  Google Scholar 

  • Roane TM, Pepper IL (2000) In: Maier RM, Pepper IL, Gerba CB (eds) Microorganisms and metal pollution, in environmental microbiology, vol 55. Academic, London, pp 403–423

    Google Scholar 

  • Rojas LA, Yanez C, Gonzalez M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS One 6:e17555

    Article  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Letter 529:86–92

    Article  Google Scholar 

  • Ross SM (1994) Sources and forms of potentially toxic metals in soil-plant systems. In: Ross SM (ed) Toxic metals in soil-plant system. Wiley, Chichester, pp 3–25

    Google Scholar 

  • Saluja B, Sharma V (2014) Cadmium resistance mechanism in acidophilic and alkalophilic bacterial isolates and their application in bioremediation of metalcontaminated soil. Soil Sediment Contam Int J 23(1):1–17

    Article  Google Scholar 

  • Sandaa RA, Torsvik V, Enger O (2001) Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol Biochem 33:87–295

    Article  Google Scholar 

  • Sanders O, Rensing I, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by glycerol facilitator GIpF in Escherichia coli. J Bacteriol 179:3365–3367

    Article  Google Scholar 

  • Sar P, D’Souza SF (2001) Biosorptive uranium uptake by pseudomonas strain: characterization and equilibrium studies. J Chem Technol Biotechnol 76:1286–1294

    Article  Google Scholar 

  • Say R, Yimaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650

    Article  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation process. Curr Opin Biotechnol 11:286–289

    Article  Google Scholar 

  • Shirdam R, Khanafari A, Tabatabaee A (2006) Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iran J Biotechnol 4(3):180–187

    Google Scholar 

  • Silver S (1996) Bacterial resistance to toxic metal ions—a review. Gene 179:9–19

    Article  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  Google Scholar 

  • Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: environmental cleanup through pathway engineering. Curr Opin Biotechnol 19:437–444

    Article  Google Scholar 

  • Sirianuntapiboon S, Ungkaprasatcha O (2007) Removal of Pb bio-sludge in sequencing batch reactor (SBR) and granular activated carbon-SBR (GAC-SBR) systems. Bioresour Technol 98:2749–2757

    Article  Google Scholar 

  • Sone Y, Mochizuki Y, Koizawa K, Nakamura R, Pan-Hou H, Itoh T, Kiyono M (2013) Mercurial resistance determinants in Pseudomonas strain K-62 plasmid pMR68. AMB express 3, article 41

    Google Scholar 

  • Soriano-Disla JM, Speir TW, Gomez I, Clucas LM, McLaren RG, Navarro-Pedreno J (2010) Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils. Water Air Soil Pollut 213:471–483

    Article  Google Scholar 

  • Spain A, Alm E (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6

    Google Scholar 

  • Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105

    Article  Google Scholar 

  • Stamets P (2005) Mycelium running: how mushroom can help save the world. Ten Speed Press, Crown Publishing Group, New York

    Google Scholar 

  • Strasser H, Burgstaller W, Schinner F (1994) High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370

    Article  Google Scholar 

  • Surin BP, Cox GB, Rosenberg H (1987) Molecular studies on the phosphate inorganic transport system of Escherichia coli. In: Torriani-Gorini A, Rothmann FG, Silver S, Wright A, Yagil E (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, DC, pp 145–149

    Google Scholar 

  • Tang CY, Criddle QS, Fu CS, Leckie JO (2007) Effect of flux (Transmembrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ Sci Technol 41:2008–2014

    Article  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204

    Article  Google Scholar 

  • Tastan BE, Ertugrul S, Donmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101(3):870–876

    Article  Google Scholar 

  • Tebo BM, Ghiorse WC, van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially- mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies. Rev Mineral 35:225–266

    Google Scholar 

  • Thavasi R (2011) Microbial biosurfactants: from an environment application point of view. J Bioremed Biodegr 2:104e

    Article  Google Scholar 

  • Treeby M, Marschner H, Roemheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant–borne, microbial, and synthetic metal chelators. Plant Soil 114:217–226

    Article  Google Scholar 

  • Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh R, Rai UN, Gupta DK (2008) Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L) plants. Chemosphere 70:1919–1929

    Article  Google Scholar 

  • Tsai YP, You SJ, Pai TY, Chen KW (2005) Effect of cadmium on composition and diversity of bacterial communities in activated sludges. Int Biodeterior Biodegrad 55:285–291

    Article  Google Scholar 

  • Turpeinen R (2002) Interactions between metals, microbes and plants – bioremediation of arsenic and lead contaminated soils. Academic dissertation in environmental ecology. Department of Ecological and Environmental Sciences, University of Helsinki, Neopoli, Laht

    Google Scholar 

  • Tyagi M, Fonseca MMRD, Carvalho CCCRD (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  Google Scholar 

  • USEPA (2004) Cleaning up the nation’s waste sites: markets and technology trends. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USGS (1997) Bioremediation: nature’s way to a cleaner environment. http://water.usgs.gov/wid/html/bioremed.html

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  Google Scholar 

  • Valls M, Atrian S, de Lorenzo V, La F (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665

    Article  Google Scholar 

  • Van Aken B, Tehrani R, Schnoor J (2011) Endophyte-assisted phytoremediation of explosives in poplar trees by Methylobacterium populi BJ001T. In: Pirttila AM, Frank AC (eds) Endophytes of forest trees: biology and applications, forestry sciences, vol 80. Springer, Heidelberg, pp 217–234

    Chapter  Google Scholar 

  • Vargas-Garcia MC, Estrella S, Lopez MJ, Moreno J (2009) Bioremediation of heavy metals with microbial isolates. Universidad de Almeria, Almeria

    Google Scholar 

  • Vega-Lopez A, Amora-Lazcano E, Lopez-Lopez E, Terron O, Proal-Najera JB (2007) Toxic effects of zinc on anaerobic microbiota from Zimapan reservoir (Mexico). Anaerobe 13:65–73

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  Google Scholar 

  • Vijayraghvan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in the soil environments. J Soil Sci Plant Nutr 10(3):268–292

    Article  Google Scholar 

  • Wang F, Yao J, Si Y, Chen H, Russel M, Chen K, Qian Y, Zaray G, Bramanti E (2010) Short-time effect of heavy metals upon microbial community activity. J Hazard Mater 173:510–516

    Article  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant–assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biochemical processes for treatment of contamination. FEMS Microbiol Rev:503–516

    Google Scholar 

  • Wielinga B, Mizuba MM, Hansel CM, Fendorf S (2001) Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol 35:522–527

    Article  Google Scholar 

  • Wu S, Cheung K, Luo Y, Wong M (2006a) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006b) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  Google Scholar 

  • Yan G, Viraraghvan T (2001) Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresour Technol 78(3):243–249

    Article  Google Scholar 

  • Yin XX, Wang LH, Bai R, Huang H, Sun GX (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223(3):1183–1190

    Article  Google Scholar 

  • Zeftawy MAME, Mulligan CN (2011) Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF). Separ Purif Technol 77(1):120–127

    Article  Google Scholar 

  • Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth promoting rhizobacteria. J Econ Entomol 90(2):391–396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Banerjee, A., Jhariya, M.K., Yadav, D.K., Raj, A. (2018). Micro-remediation of Metals: A New Frontier in Bioremediation. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics