Skip to main content

Illumina HumanMethylation BeadChip for Genome-Wide DNA Methylation Profiling: Advantages and Limitations

  • Reference work entry
  • First Online:
Book cover Handbook of Nutrition, Diet, and Epigenetics
  • 231 Accesses

Abstract

HumanMethylation BeadChip is an array platform for highly multiplexed measurement of DNA methylation at individual CpG locus in the human genome based on Illumina’s bead technology. It measures the DNA methylation level of individual CpG site by quantitative genotyping of C/T polymorphisms generated in bisulfite-converted and amplified genomic DNA. The current version, HumanMethylationEPIC, measures the DNA methylation level of >850,000 CpG sites, while the previous versions, HumanMethylation450 (HM450) and HumanMethylation27 (HM27), measured that of >480,000 and >27,000 CpG sites, respectively. HumanMethylation BeadChip requires only 4 days to produce methylome profiles of human samples using 250–500 ng of genomic DNA as a starting material. Because of its time and cost efficiency, high sample output, and overall quantitative accuracy and reproducibility, HM450 has become the most widely used means of large-scale methylation profiling of human samples in recent years. However, it is important to consider potential confounders originating in the technical limitations of HumanMethylation BeadChip such as cross-reactive probes, SNP-affected probes, within-array bias (Infinium I and II bias), and between-array bias (batch effects) especially when subtle methylation differences need to be detected by statistical tests between large numbers of cases and controls. Many integrated analysis packages have been developed by the epigenetics research community as computational solutions for technical and biological confounders associated with HumanMethylation BeadChip data. Considering the substantial increase of the coverage of regulatory regions along with the advantages inherited from HM450, EPIC is expected to maintain its popularity as a platform for epigenome-wide association studies for the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-mC:

5-methylcytosine

CpG:

Cytosine-guanine

ddNTP:

Dideoxynucleotide triphosphate

DNP:

Dinitrophenol

EWAS:

Epigenome-wide association study

NGS:

Next-generation sequencing

nt:

Nucleotide

SNP:

Single-nucleotide polymorphism

UTR:

Untranslated region

References

  • Akulenko R, Merl M, Helms V (2016) BEclear: batch effect detection and adjustment in DNA methylation data. PLoS One 11:e0159921

    Article  Google Scholar 

  • Almeida D, Skov I, Lund J et al (2016) Jllumina - a comprehensive java-based API for statistical Illumina Infinium HumanMethylation450 and MethylationEPIC data processing. J Integr Bioinform 13:294

    PubMed  Google Scholar 

  • Almeida D, Skov I, Silva A et al (2017) Efficient detection of differentially methylated regions using DiMmeR. Bioinformatics 33:549–551

    CAS  PubMed  Google Scholar 

  • Bibikova M, Le J, Barnes B et al (2009) Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics. 1:177–200

    Article  CAS  Google Scholar 

  • Bibikova M, Barnes B, Tsan C et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98:288–295

    Article  CAS  Google Scholar 

  • Carless MA (2015) Determination of DNA methylation levels using Illumina human methylation BeadChips. In: Chellappan SP (ed) Chromatin protocols, Methods in molecular biology, vol 1288. Springer, New York, pp 143–192

    Google Scholar 

  • Chen YA, Lemire M, Choufani S et al (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8:203–209

    Article  CAS  Google Scholar 

  • Cotton AM, Price EM, Jones MJ et al (2015) Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum Mol Genet 24:1528–1539

    Article  CAS  Google Scholar 

  • Court F, Tayama C, Romanelli V et al (2014) Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 24:554–569

    Article  CAS  Google Scholar 

  • Dedeurwaerder S, Defrance M, Bizet M et al (2014) A comprehensive overview of Infinium HumanMethylation450 data processing. Brief Bioinform 15:929–941

    Article  CAS  Google Scholar 

  • Dedeurwaerder S, Defrance M, Calonne E et al (2011) Evaluation of the Infinium methylation 450K technology. Epigenomics 3:771–784

    Article  CAS  Google Scholar 

  • de Mello VD, Pulkkinen L, Lalli M et al (2014) DNA methylation in obesity and type 2 diabetes. Ann Med 46:103–113

    Article  Google Scholar 

  • Dick KJ, Nelson CP, Tsaprouni L et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998

    Article  CAS  Google Scholar 

  • Eckhardt F, Lewin J, Cortese R et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385

    Article  CAS  Google Scholar 

  • Fan JB, Hu SX, Craumer WC et al (2005) BeadArray-based solutions for enabling the promise of pharmacogenomics. BioTechniques 39:583–588

    Article  Google Scholar 

  • Florath I, Butterbach K, Müller H et al (2014) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 23:1186–1201

    Article  CAS  Google Scholar 

  • Florath I, Butterbach K, Heiss J et al (2016) Type 2 diabetes and leucocyte DNA methylation: an epigenome-wide association study in over 1,500 older adults. Diabetologia 59:130–138

    Article  CAS  Google Scholar 

  • Gunderson KL, Kruglyak S, Graige MS et al (2004) Decoding randomly ordered DNA arrays. Genome Res 14:870–877

    Article  CAS  Google Scholar 

  • Gu J, Stevens M, Xing X et al (2016) Mapping of variable DNA methylation across multiple cell types defines a dynamic regulatory landscape of the human genome. G3 (Bethesda) 6:973–986

    Article  CAS  Google Scholar 

  • Hayatsu H (2008) Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis – a personal account. Proc Jpn Acad Ser B Phys Biol Sci 84:321–330

    Article  CAS  Google Scholar 

  • Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 15:R31

    Article  Google Scholar 

  • Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28:1069–1078

    Article  CAS  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  Google Scholar 

  • Leek JT, Scharpf RB, Bravo HC et al (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11:733–739

    Article  CAS  Google Scholar 

  • Liu J, Siegmund KD (2016) An evaluation of processing methods for HumanMethylation450 BeadChip data. BMC Genomics 17:469

    Article  Google Scholar 

  • Liu Y, Aryee MJ, Padyukov L et al (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31:142–147

    Article  CAS  Google Scholar 

  • Miyata K, Miyata T, Nakabayashi K et al (2015) DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation. Hum Mol Genet 24:410–423

    Article  CAS  Google Scholar 

  • Morris TJ, Beck S (2015) Analysis pipelines and packages for Infinium HumanMethylation450 BeadChip (450k) data. Methods 72:3–8

    Article  CAS  Google Scholar 

  • Maksimovic J, Gagnon-Bartsch JA, Speed TP et al (2015) Removing unwanted variation in a differential methylation analysis of Illumina HumanMethylation450 array data. Nucleic Acids Res 43:e106

    Article  Google Scholar 

  • Petersen AK, Zeilinger S, Kastenmüller G et al (2014) Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet 23:534–545

    Article  CAS  Google Scholar 

  • Pidsley R, Zotenko E, Peters TJ et al (2016) Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol 17:208

    Article  Google Scholar 

  • Price ME, Cotton AM, Lam LL et al (2013) Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin 6:4

    Article  CAS  Google Scholar 

  • Rask-Andersen M, Martinsson D, Ahsan M, et al (2016) Epigenome-wide association study reveals differential DNA methylation in individuals with a history of myocardial infarction. Hum Mol Genet (Epub ahead of print) PMID: 27634651

    Google Scholar 

  • Relton CL, Gaunt T, McArdle W, Ho K, Duggirala A, Shihab H, Woodward G, Lyttleton O, Evans DM, Reik W, Paul YL, Ficz G, Ozanne SE, Wipat A, Flanagan K, Lister A, Heijmans BT, Ring SM, Davey SG (2015) Data resource profile: accessible resource for integrated Epigenomic studies (ARIES). Int J Epidemiol 44:1181–1190

    Article  Google Scholar 

  • Sun Z, Chai HS, Wu Y et al (2011) Batch effect correction for genome-wide methylation data with Illumina Infinium platform. BMC Med Genet 4:84

    CAS  Google Scholar 

  • Shoemaker R, Deng J, Wang W, Zhang K (2010) Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 20:883–889

    Article  CAS  Google Scholar 

  • Stirzaker C, Taberlay PC, Statham AL, Clark SJ (2014) Mining cancer methylomes: prospects and challenges. Trends Genet 30:75–84

    Article  CAS  Google Scholar 

  • Triche TJ Jr, Weisenberger DJ, Van Den Berg D et al (2013) Low-level processing of Illumina Infinium DNA methylation BeadArrays. Nucleic Acids Res 41:e90

    Article  CAS  Google Scholar 

  • Teschendorff AE, Marabita F, Lechner M et al (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29:189–196

    Article  CAS  Google Scholar 

  • Wen KX, Miliç J, El-Khodor B et al (2016) The role of DNA methylation and histone modifications in neurodegenerative diseases: a systematic review. PLoS One 11:e0167201

    Article  Google Scholar 

  • Yousefi P, Huen K, Aguilar Schall R et al (2013) Considerations for normalization of DNA methylation data by Illumina 450K BeadChip assay in population studies. Epigenetics 8:1141–1152

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang R (2015) Epigenetics in autoimmune diseases: pathogenesis and prospects for therapy. Autoimmun Rev 14:854–863

    Article  CAS  Google Scholar 

  • Zhou W, Laird PW, Shen H (2017) Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res 45:e22

    PubMed  Google Scholar 

  • Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT-Y, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Nakabayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nakabayashi, K. (2019). Illumina HumanMethylation BeadChip for Genome-Wide DNA Methylation Profiling: Advantages and Limitations. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_89

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics