Skip to main content

Nutritional Regulation of Mammary miRNome: Implications for Human Studies

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Mammary gland is the organ of milk component synthesis that provides the nutrients for growth and development of the mammalian neonate. In addition to macronutrients like proteins, carbohydrates, and lipids known for their roles in providing substrate and energy, a new class of components has been identified notably microRNA that have signaling roles regulating a large set of biological processes. MicroRNAs, short noncoding RNAs, have been reported to act on the mammary tissues, influencing mammary development and milk component biosynthesis, and evidence is now assembling that they also signal to the infant. The expression profile of these miRNAs can be under nutritional regulation. Their presence in milk and their relative persistency through industrial treatment open new way of investigations to use them as biomarkers of animal health, as well as to evaluate their effects on the health of those consuming them. Due to the role of miRNAs on human health and diseases, their transfer from milk or milk products to infants and adults is being actively researched, though their bioavailability is not known. Research is defining their distribution in the different fractions of milk (such as cells, exosomes, fat globule, or skim milk). Indeed, the unique packaging of miRNAs could be crucial for their action through the intestinal tract. The value of milk miRNAs to diverse aspects of human health is now an emerging field of science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3′UTR:

Three prime untranslated region

ACACA:

Acetyl-CoA carboxylase 1

ACSL1:

Acyl-CoA synthetase long-chain family member 1

CSN1S1:

Casein alpha S1

CSN2:

Casein beta

DNA:

Deoxyribonucleic acid

ESR1:

Estrogen receptor 1

FASN:

Fatty acid synthase

GLUT1:

Glucose transporter 1

GMEC:

Goat mammary epithelial cells

HER2:

Human epidermal growth factor receptor 2

MEC:

Mammary epithelial cells

MG:

Mammary gland

miRNA:

Microribonucleic acid

NGS:

Next-generation sequencing

PPARG:

Peroxisome proliferator-activated receptor gamma

RISC:

RNA-induced silencing complex

SCD1:

Stearoyl-CoA desaturase

SREBP1:

Sterol regulatory element-binding protein 1

References

  • Alsaweed M, Hartmann PE, Geddes DT, Kakulas F (2015a) MicroRNAs in Breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health 12:13981–14020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsaweed M, Hepworth AR, Lefevre C, Hartmann PE et al (2015b) Human milk MicroRNA and Total RNA differ depending on milk fractionation. J Cell Biochem 116:2397–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F (2016) Human milk cells and lipids conserve numerous known and novel miRNAs, some of which are differentially expressed during lactation. PLoS One 11:e0152610

    PubMed  PubMed Central  Google Scholar 

  • Anderson SM, Rudolph MC, Mcmanaman JL, Neville MC (2007) Key stages in mammary gland development – secretory activation in the mammary gland: it's not just about milk protein synthesis! Breast Cancer Res 9:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J (2014) MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 144:1495–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 5:1122–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian Y, Lei Y, Wang C, Wang J et al (2015) Epigenetic regulation of miR-29s affects the lactation activity of dairy cow mammary epithelial cells. J Cell Physiol 230:2152–2163

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Gao C, Li H, Huang L et al (2010) Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 20:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Chichlowski M, German JB, Lebrilla CB, Mills DA (2011) The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas. Annu Rev Food Sci Technol 2:331–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui W, Li Q, Feng L, Ding W (2011) MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland. Mol Cell Biochem 355:17–25

    Article  CAS  PubMed  Google Scholar 

  • Galio L, Droineau S, Yeboah P, Boudiaf H et al (2013) MicroRNA in the ovine mammary gland during early pregnancy: spatial and temporal expression of miR-21, miR-205, and miR-200. Physiol Genomics 45:151–161

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Cai Q, Huang Y, Li S et al (2016) MicroRNA-21 as a potential diagnostic biomarker for breast cancer patients: a pooled analysis of individual studies. Oncotarget 7:34498–34506

    PubMed  PubMed Central  Google Scholar 

  • German JB, Dillard CJ (2010) Saturated fats: a perspective from lactation and milk composition. Lipids 45:915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givens DI (2010) Milk and meat in our diet: good or bad for health? Animal 4:1941–1952

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Eleswarapu S, Jiang H (2007) Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett 581:981–988

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, Kim YK et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard KM, Jati Kusuma R, Baier SR, Friemel T et al (2015) Loss of miRNAs during processing and storage of cow’s (Bos taurus) milk. J Agric Food Chem 63:588–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys KJ, Mckinnon RA, Michael MZ (2014) miR-18a inhibits CDC42 and plays a tumour suppressor role in colorectal cancer cells. PLoS One 9:e112288

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibarra I, Erlich Y, Muthuswamy SK, Sachidanandam R, Hannon GJ (2007) A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev 21:3238–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi H, Tsuda M, Sato Y, Kosaka N et al (2015) Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J Dairy Sci 98:2920–2933

    Article  CAS  PubMed  Google Scholar 

  • Jahagirdar D, Purohit S, Jain A, Sharma NK (2016) Export of microRNAs: a bridge between breast carcinoma and their neighboring cells. Front Oncol 6:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji Z, Wang G, Xie Z, Zhang C, Wang J (2012) Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol Biol Rep 39(10):9361–71

    Article  CAS  PubMed  Google Scholar 

  • Khoshnaw SM, Rakha EA, Abdel-fatah TM, Nolan CC et al (2012) Loss of dicer expression is associated with breast cancer progression and recurrence. Breast Cancer Res Treat 135:403–413

    Article  CAS  PubMed  Google Scholar 

  • Khoshnaw SM, Rakha EA, Abdel-fatah T, Nolan CC et al (2013) The microRNA maturation regulator Drosha is an independent predictor of outcome in breast cancer patients. Breast Cancer Res Treat 137:139–153

    Article  CAS  PubMed  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  • Kosaka N, Izumi H, Sekine K, Ochiya T (2010) microRNA as a new immune-regulatory agent in breast milk. Silence 1:7–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Koutsaki M, Spandidos DA, Zaravinos A (2014) Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett 351:173–181

    Article  CAS  PubMed  Google Scholar 

  • Lago-Novais D, Pawlowski K, Pires J, Mobuchon L, et al (2016) Milk fat globules as a source of mammary microRNA. In: 2016 ADSA/ASAS Joint Annual Meeting. p 401. 

    Google Scholar 

  • Laubier J, Castille J, Le Guillou S, Le Provost F (2015) No effect of an elevated miR-30b level in mouse milk on its level in pup tissues. RNA Biol 12:26–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Guillou S, Sdassi N, Laubier J, Passet B et al (2012) Overexpression of miR-30b in the developing mouse mammary gland causes a lactation defect and delays involution. PLoS One 7:e45727

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Guillou S, Marthey S, Laloe D, Laubier J et al (2014) Characterisation and comparison of lactating mouse and bovine mammary gland miRNomes. PLoS One 9:e91938

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HM, Wang CM, Li QZ, Gao XJ (2012a) MiR-15a decreases bovine mammary epithelial cell viability and lactation and regulates growth hormone receptor expression. Molecules 17:12037–12048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Liu H, Jin X, Lo L, Liu J (2012b) Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics 13:731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Dudemaine PL, Zhao X, Lei C, Ibeagha-awemu EM (2016) Comparative analysis of the miRNome of bovine milk fat, whey and cells. PLoS One 11:e0154129

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian S, Guo JR, Nan XM, Ma L et al (2016) MicroRNA Bta-miR-181a regulates the biosynthesis of bovine milk fat by targeting ACSL1. J Dairy Sci 99:3916–3924

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Luo J, Zhang L, Wang W, Gou D (2013a) MiR-103 controls milk fat accumulation in goat (Capra Hircus) mammary gland during lactation. PLoS One 8:e79258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin XZ, Luo J, Zhang LP, Wang W et al (2013b) MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells. Gene 521:15–23

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Zhan JK, Wang YJ, Tan P et al (2016) Function, role, and clinical application of MicroRNAs in vascular aging. Biomed Res Int 2016:6021394

    PubMed  PubMed Central  Google Scholar 

  • Malcomson FC, Willis ND, McCallum I, Xie L et al (2017) Non-digestible carbohydrates supplementation increases miR-32 expression in the healthy human colorectal epithelium: a randomized controlled trial. Mol Carcinog. https://doi.org/10.1002/mc.22666

  • Marques-Rocha JL, Milagro FI, Mansego ML, Zulet MA et al (2016) Expression of inflammation-related miRNAs in white blood cells from subjects with metabolic syndrome after 8 wk of following a Mediterranean diet-based weight loss program. Nutrition 32:48–55

    Article  CAS  PubMed  Google Scholar 

  • Martinez I, Cazalla D, Almstead LL, Steitz JA, Dimaio D (2011) miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci USA 108:522–527

    Article  CAS  PubMed  Google Scholar 

  • Mercken EM, Majounie E, Ding J, Guo et al (2013) Age-associated miRNA alterations in skeletal muscle from rhesus monkeys reversed by caloric restriction. Aging (Albany NY) 5:692–703

    Article  CAS  Google Scholar 

  • Milenkovic D, Deval C, Gouranton E, Landrier JF et al (2012) Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS One 7:e29837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milenkovic D, Jude B, Morand C (2013) miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med 64:40–51

    Article  CAS  PubMed  Google Scholar 

  • Mobuchon L, Marthey S, Boussaha M, Le Guillou S et al (2015a) Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches. BMC Genomics 16:285

    Article  PubMed  PubMed Central  Google Scholar 

  • Mobuchon L, Marthey S, Le Guillou S, Laloe D et al (2015b) Food deprivation affects the miRNome in the lactating goat mammary gland. PLoS One 10:e0140111

    Article  PubMed  PubMed Central  Google Scholar 

  • Mobuchon L, Le Guillou S, Marthey S, Laubier J et al (2017) Sunflower oil supplementation affects the expression of miR-20a-5p and miR-142-5p in the lactating bovine mammary gland. PLoS One. in press

    Google Scholar 

  • Munch EM, Harris RA, Mohammad M, Benham AL et al (2013) Transcriptome profiling of microRNA by next-gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS One 8:e50564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T et al (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328:1566–1569

    Article  CAS  PubMed  Google Scholar 

  • Nassar FJ, Nasr R, Talhouk R (2016) MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther 172:34–49

    Article  PubMed  Google Scholar 

  • Nouraee N, Mowla SJ (2015) miRNA therapeutics in cardiovascular diseases: promises and problems. Front Genet 6:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Ollier S, Robert-Granie C, Bernard L, Chilliard Y, Leroux C (2007) Mammary transcriptome analysis of food-deprived lactating goats highlights genes involved in milk secretion and programmed cell death. J Nutr 137:560–567

    Article  CAS  PubMed  Google Scholar 

  • Orom UA, Lim MK, Savage JE, Jin L et al (2012) MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction. Cell Cycle 11:1291–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pando R, Even-Zohar N, Shtaif B, Edry L et al (2012) MicroRNAs in the growth plate are responsive to nutritional cues: association between miR-140 and SIRT1. J Nutr Biochem 23:1474–1481

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Lakatos P, Hartmann A, Schneider-Stock R, Vera J (2017) Identification of miRNA-mRNA modules in colorectal cancer using rough hypercuboid based supervised clustering. Sci Rep 7:42809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    Article  CAS  PubMed  Google Scholar 

  • Sayed D, Abdellatif M (2011) Micrornas in development and disease. Physiol Rev 91:827–887

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Aswath K, Schroeder SG, Lippolis JD et al (2015) MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Geno 16;16:806

    Google Scholar 

  • Title AC, Denzler R, Stoffel M (2015) Uptake and function studies of maternal milk-derived MicroRNAs. J Biol Chem 290:23680–23691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tome-Carneiro J, Larrosa M, Yanez-Gascon MJ, Davalos A et al (2013) One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 72:69–82

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Moisa S, Khan MJ, Wang J et al (2012) MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation. J Dairy Sci 95:6529–6535

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hou X, Qu B, Wang J et al (2014) Pten regulates development and lactation in the mammary glands of dairy cows. PLoS One 9:e102118

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Luo J, Chen Z, Cao WT et al (2015) MicroRNA-24 can control triacylglycerol synthesis in goat mammary epithelial cells by targeting the fatty acid synthase gene. J Dairy Sci 98:9001–9014

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Luo J, Zhang T, TIAN H et al (2016) MicroRNA-26a/b and their host genes synergistically regulate triacylglycerol synthesis by targeting the INSIG1 gene. RNA Biol 13:500–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Wicik Z, Gajewska M, Majewska A, Walkiewicz D et al (2016) Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers. J Anim Breed Genet 133(1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Xi Y, Jiang X, Li R, Chen M et al (2016) The levels of human milk microRNAs and their association with maternal weight characteristics. Eur J Clin Nutr 70:445–449

    Article  CAS  PubMed  Google Scholar 

  • Zeljic K, Supic G, Magic Z (2017) New insights into vitamin D anticancer properties: focus on miRNA modulation. Mol Genet Genomics 292:511–524

    Article  CAS  PubMed  Google Scholar 

  • Zempleni J, Baier SR, Howard KM, Cui J (2015) Gene regulation by dietary microRNAs. Can J Physiol Pharmacol 93:1097–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zempleni J, Aguilar-Lozano A, Sadri M, Sukreet S et al (2017) Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants. J Nutr 147:3–10

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hou D, Chen X, Li D et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Li M, Wang X, Li Q et al (2012) Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 8:118–123

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Leroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Leroux, C. et al. (2019). Nutritional Regulation of Mammary miRNome: Implications for Human Studies. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_88

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics