Skip to main content

Milk Exosomes and MicroRNAs: Potential Epigenetic Regulators

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

The scientific perception of the biological functions of milk, mammal’s secretory product of mammary gland epithelial cells during lactation, has dramatically changed in recent years from a simple food for the newborn mammal to a most sophisticated signaling system between the mother and her infant, in addition to nourishment, protection, and development it provides. From the wide range of extracellular vesicles found in milk, this review focuses primarily on milk exosomes and exosome-delivered microRNAs that emerge as an epigenetic regulatory software of milk decreasing genome methylation of the milk recipient. Thus, milk-derived exosomes are regarded as critical signalosomes for mother-to-child transmission of microRNAs that affect epigenetic regulatory circuits of the milk recipient. Evidence accumulates that epigenetic signaling of milk promotes the development of the infant’s gastrointestinal tract, immune system, osteogenesis, myogenesis, adipogenesis, and neurogenesis. According to the functional hypothesis, milk exosomal microRNAs may reach the systemic circulation of the infant and the adult human milk consumer. Human and bovine milk exosomes and their associated microRNAs are found in the fat fraction of milk and in skim milk. microRNAs are also present in large numbers in the cellular fraction of milk, making it a microRNA-rich medium, likely the richest microRNA source of all body fluids in humans. Human milk and commercial cow’s milk provides abundant amounts of microRNA-148a, microRNA-152, microRNA-29b, and microRNA-21, which all target DNA methyltransferases (DNMTs) that potentially affect whole genome DNA methylation patterns. DNA CpG demethylation upregulates the expression of many genes including the m6A RNA demethylase fat mass- and obesity-associated protein (FTO). In this regard, milk exosomal microRNAs may function as potential epigenetic modifiers of DNA- and RNA methylation of the milk recipient, who under physiological conditions is the suckling infant, but also the human consumer of commercial cow’s milk. Whereas milk exosome-driven epigenetic signaling appears to be indispensable for adequate postnatal growth and programming of the infant, this microRNA transmitter is almost absent in artificial formula, potentially leading to faulty or immature epigenetic programming of formula-fed infants. Furthermore, persistent consumption of commercial cow’s milk that still contains bioactive microRNAs, some of which exhibit high complementarity to human milk microRNAs, has currently unknown consequences to human health and may bear a health risk for humans of developed milk-consuming civilizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGO2:

Argonaute 2

AKT:

V-AKT murine thymoma viral oncogene homolog

CMA:

Cow’s milk allergy

D2R:

Dopamine receptor type 2

DNMT:

DNA methyltransferase

EV:

Extracellular vesicle

FoxP3:

Forkhead box P3

FTO:

Fat mass- and obesity-associated gene

GLUT1:

Glucose transporter 1

IEC:

Intestinal epithelial cell

IgE:

Immunoglobulin E

IGF-1:

Insulin-like growth factor-1

IGF1R:

Insulin-like growth factor-1 receptor

IL:

Interleukin

ILV:

Intralumial vesicle

IκBα:

Nuclear factor κB inhibitor α

KO:

Knockout

LCT:

Lactase gene

m6A:

N6-methyladenosine

MEC:

Mammary epithelial cell

MEF:

Mouse embryonic fibroblast

MFG:

Milk fat globule

MFGM:

Milk fat globule membrane

microRNA:

Micro-ribonucleic acid

mTORC1:

Mechanistic target of rapamycin complex 1

MVB:

Multi-vesicular body

NEC:

Necrotizing enterocolitis

NFKBI:

Nuclear factor of κ light chain gene enhancer in B cells inhibitor α

NF-κB:

Nuclear factor κB

NR4A3:

Nuclear receptor subfamily 4, group A, member 3

NRF2:

Nuclear factor erythroid 2-related factor 2

p53:

Transformation-related protein 53

PBMCs:

Peripheral blood mononuclear cells

PGC1α:

PPAR-γ coactivator 1-α

PI3K:

Phosphatidylinositol 3-kinase

PPARγ:

Peroxisome proliferator-activated receptor-γ

RASGRP1:

Ras guanyl nucleotide-releasing protein-1

RISC:

RNA silencing complex

RNA:

Ribonucleic acid

ROCK1:

Rho-associated coiled-coil containing protein kinase 1

RUNX1T1:

Runt-related transcription factor 1, translocated to, 1

S6 K1:

Ribosomal protein S6 kinase

SIDT1:

Systemic RNA interference-defective-1 transmembrane family member 1

SNP:

Single nucleotide polymorphisms

SREBP-1:

Sterol regulatory element-binding protein 1

SRSF2:

Serine/arginine-rich splicing factor-2

TCR:

T cell receptor

TGFβ:

Transforming growth factor-β

TNF:

Tumor necrosis factor

TSDR:

Treg-specific demethylated region

UTR:

Untranslated region

VEC:

Vascular endothelial cell

References

  • Admyre C, Johansson SM, Qazi KR et al (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179:1969–1978

    Article  CAS  PubMed  Google Scholar 

  • Alsaweed M, Hartmann PE, Geddes DT, Kakulas F (2015) MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health 12:13981–14020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsaweed M, Lai CT, Hartmann PE et al (2016a) Human milk cells and lipids conserve numerous known and novel miRNAs, some of which are differentially expressed during lactation. PLoS One 11:e0152610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alsaweed M, Lai CT, Hartmann PE et al (2016b) Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci Rep 6:20680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsaweed M, Lai CT, Hartmann PE et al (2016c) Human milk cells contain numerous miRNAs that may change with milk removal and regulate multiple physiological processes. Int J Mol Sci 17:E956

    Article  PubMed  CAS  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Arntz OJ, Pieters BC, Oliveira MC et al (2015) Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol Nutr Food Res 59:1701–1712

    Article  CAS  PubMed  Google Scholar 

  • Baddela VS, Nayan V, Rani P et al (2016) Physicochemical biomolecular insights into buffalo milk-derived nanovesicles. Appl Biochem Biotechnol 178:544–557

    Article  CAS  PubMed  Google Scholar 

  • Baier SR, Nguyen C, Xie F et al (2014) MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 144:1495–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendavit G, Aboulkassim T, Hilmi K et al (2016) Nrf2 transcription factor can directly regulate mTOR; linking cytoprotective gene expression to a major metabolic regulator that generates redox activity. J Biol Chem 291:25476–25488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benmoussa A, Lee CH, Laffont B et al (2016) Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr 146:2206–2215

    Article  CAS  PubMed  Google Scholar 

  • Bian Y, Lei Y, Wang C et al (2015) Epigenetic regulation of miR-29s affects the lactation activity of dairy cow mammary epithelial cells. J Cell Physiol 230:2152–2163

    Article  CAS  PubMed  Google Scholar 

  • Boissel S, Reish O, Proulx K et al (2009) Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 85:106–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Wang L, Chen B et al (2016) DNA demethylation upregulated Nrf2 expression in Alzheimer’s disease cellular model. Front Aging Neurosci 7:244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen D, Wang Z (2017) Adrenaline inhibits osteogenesis via repressing miR-21 expression. Cell Biol Int 41:8–15

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Gao C, Li H et al (2010) Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 20:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Xi QY, Ye RS et al (2014) Exploration of microRNAs in porcine milk exosomes. BMC Genomics 15:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Zhou X, Wu W et al (2015) FTO-dependent function of N6-methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice. J Physiol Biochem 71:405–413

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Xie MY, Sun JJ et al (2016) Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells. Sci Rep 6:33862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Luo J, Sun S et al (2017) miR-148a and miR-17-5p synergistically regulate milk TAG synthesis via PPARGC1A and PPARA in goat mammary epithelial cells. RNA Biol 14:326–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Church C, Moir L, McMurray F et al (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206

    Article  CAS  PubMed  Google Scholar 

  • Duursma AM, Kedde M, Schrier M et al (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elhassan MO, Christie J, Duxbury MS (2012) Homo sapiens systemic RNA interference-defective-1 transmembrane family member 1 (SIDT1) protein mediates contact-dependent small RNA transfer and microRNA-21-driven chemoresistance. J Biol Chem 287:5267–5277

    Article  CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104:15805–15810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer J, Koch L, Emmerling C et al (2009) Inactivation of the Fto gene protects from obesity. Nature 458:894–898

    Article  CAS  PubMed  Google Scholar 

  • Gallier S, Vocking K, Post JA et al (2015) A novel infant milk formula concept: mimicking the human milk fat globule structure. Colloids Surf B Biointerfaces 136:329–339

    Article  CAS  PubMed  Google Scholar 

  • Godfrey KM, Costello PM, Lillycrop KA (2016) Development, epigenetics and metabolic programming. Nestle Nutr Inst Workshop Ser 85:71–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Li M, Wang T et al (2012) Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One 7:e43691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassiotou F, Beltran A, Chetwynd E et al (2012) Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells 30:2164–2174

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassiotou F, Geddes DT, Hartmann PE (2013) Cells in human milk: state of the science. J Hum Lact 29:171–182

    Article  PubMed  Google Scholar 

  • Hata T, Murakami K, Nakatani H et al (2010) Isolation of bovine milk-derived microvesicles carrying mRNA and microRNAs. Biochem Biophys Res Commun 396:528–533

    Article  CAS  PubMed  Google Scholar 

  • Hess ME, Hess S, Meyer KD et al (2013) The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci 16:1042–1048

    Article  CAS  PubMed  Google Scholar 

  • Hinz D, Bauer M, Röder S et al (2012) Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year. Allergy 67:380–389

    Article  CAS  PubMed  Google Scholar 

  • Howard KM, Jati Kusuma R, Baier SR et al (2015) Loss of miRNAs during processing and storage of cow’s (Bos taurus) milk. J Agric Food Chem 63:588–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huehn J, Beyer M (2015) Epigenetic and transcriptional control of Foxp3+ regulatory T cells. Semin Immunol 27:10–18

    Article  CAS  PubMed  Google Scholar 

  • Ishitsuka Y, Huebner AJ, Rice RH et al (2016) Lce1 family members are Nrf2-target genes that are induced to compensate for the loss of loricrin. J Invest Dermatol 136:1656–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi H, Kosaka N, Shimizu T et al (2012) Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci 95:4831–4841

    Article  CAS  PubMed  Google Scholar 

  • Izumi H, Tsuda M, Sato Y et al (2015) Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J Dairy Sci 98:2920–2933

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Fu Y, Zhao X et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josefowicz SZ, Wilson CB, Rudensky AY (2009) Cutting edge: TCR stimulation is sufficient for induction of Foxp3 expression in the absence of DNA methyltransferase 1. J Immunol 182:6648–6652

    Article  CAS  PubMed  Google Scholar 

  • Karra E, O’Daly OG, Choudhury AI et al (2013) A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Invest 123:3539–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Singhal V, Biswal S et al (2014) Nrf2 is required for normal postnatal bone acquisition in mice. Bone Res 2:14033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchner B, Pfaffl MW, Dumpler J et al (2016) microRNA in native and processed cow’s milk and its implication for the farm milk effect on asthma. J Allergy Clin Immunol 137:1893–1895.e13

    Article  CAS  PubMed  Google Scholar 

  • Kodama N, Iwao T, Kabeya T et al (2016) Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes. Drug Metab Pharmacokinet 31:193–200

    Article  CAS  PubMed  Google Scholar 

  • Kosaka N, Izumi H, Sekine K, Ochiya T (2010) microRNA as a new immune-regulatory agent on breast milk. Silence 1:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurinna S, Schäfer M, Ostano P et al (2014) A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes. Nat Commun 5:5099

    Article  CAS  PubMed  Google Scholar 

  • Kusuma RJ, Manca S, Friemel T et al (2016) Human vascular endothelial cells transport foreign exosomes from cow’s milk by endocytosis. Am J Physiol Cell Physiol 310:C800–C807

    Article  PubMed  PubMed Central  Google Scholar 

  • Labrie V, Buske OJ, Oh E et al (2016) Lactase nonpersistence is directed by DNA-variation-dependent epigenetic aging. Nat Struct Mol Biol 23:566–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Hassan MQ, Jafferji M et al (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676–15684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Jensen ML, Chatterton DE et al (2014) Raw bovine milk improves gut responses to feeding relative to infant formula in preterm piglets. Am J Physiol Gastrointest Liver Physiol 306:G81–G90

    Article  CAS  PubMed  Google Scholar 

  • Li R, Dudemaine PL, Zhao X et al (2016) Comparative analysis of the miRNome of bovine milk fat, whey and cells. PLoS One 11:e0154129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu ZW, Zhang JT, Cai QY et al (2014) Birth weight is associated with placental fat mass- and obesity-associated gene expression and promoter methylation in a Chinese population. J Matern Fetal Neonatal Med 10:1–6

    CAS  Google Scholar 

  • Loss G, Apprich S, Waser M et al (2011) The protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study. J Allergy Clin Immunol 128:766–773

    Article  PubMed  Google Scholar 

  • Lucarelli M, Fuso A, Strom R, Scarpa S (2001) The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. J Biol Chem 276:7500–7506

    Article  CAS  PubMed  Google Scholar 

  • Luo SX, Huang EJ (2016) Dopaminergic neurons and brain reward pathways: from neurogenesis to circuit assembly. Am J Pathol 186:478–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maity A, Das B (2016) N6-methyladenosine modification in mRNA: machinery, function and implications for health and diseases. FEBS J 283:1607–1630

    Article  CAS  PubMed  Google Scholar 

  • Melnik BC (2015a) Milk – a nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci 16:17048–17087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnik BC (2015b) Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med 13:385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melnik BC, John SM, Schmitz G (2013) Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J 12:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnik BC, John SM, Schmitz G (2014) Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med 12:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melnik BC, John SM, Carrera-Bastos P, Schmitz G (2016a) Milk: a postnatal imprinting system stabilizing FoxP3 expression and regulatory T cell differentiation. Clin Transl Allergy 6:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melnik BC, John SM, Schmitz G (2016b) Milk: an epigenetic inducer of FoxP3 expression. J Allergy Clin Immunol 138:937–938

    Article  CAS  PubMed  Google Scholar 

  • Melnik BC, Kakulas F, Geddes DT et al (2016c) Milk miRNAs: simple nutrients or systemic functional regulators? Nutr Metab (Lond) 13:42

    Article  CAS  Google Scholar 

  • Merkestein M, McTaggart JS, Lee S et al (2014) Changes in gene expression associated with FTO overexpression in mice. PLoS One 9:e97162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merkestein M, Laber S, McMurray F et al (2015) FTO influences adipogenesis by regulating mitotic clonal expansion. Nat Commun 6:6792

    Article  CAS  PubMed  Google Scholar 

  • Modepalli V, Kumar A, Hinds LA et al (2014) Differential temporal expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus eugenii). BMC Genomics 15:1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:1

    Article  CAS  Google Scholar 

  • Munch EM, Harris RA, Mohammad M et al (2013) Transcriptome profiling of microRNA by next-gene deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS One 8:e50564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na RS, GX E, Sun W et al (2015) Expressional analysis of immune-related miRNAs in breast milk. Genet Mol Res 14:11371–11376

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman A, Colleran A, Ryan A et al (2010) Regulation of NF-kappaB responses by epigenetic suppression of IkappaBalpha expression in HCT116 intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 299:G96–G105

    Article  PubMed  CAS  Google Scholar 

  • Oliveira MC, Di Ceglie I, Arntz OJ et al (2017) Milk-derived nanoparticle fraction promotes the formation of small osteoclasts but reduces bone resorption. J Cell Physiol 232:225–233

    Article  CAS  PubMed  Google Scholar 

  • Palacios D, Puri PL (2006) The epigenetic network regulating muscle development and regeneration. J Cell Physiol 207:1–11

    Article  CAS  PubMed  Google Scholar 

  • Palacios-Ortega S, Varela-Guruceaga M, Milagro FI et al (2014) Expression of caveolin 1 is enhanced by DNA demethylation during adipocyte differentiation. Status of insulin signaling. PLoS One 9:e95100

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan W, Zhu S, Yuan M et al (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184:6773–6781

    Article  CAS  PubMed  Google Scholar 

  • Paparo L, Nocerino R, Cosenza L et al (2016) Epigenetic features of FoxP3 in children with cow’s milk allergy. Clin Epigenetics 8:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parigi SM, Eldh M, Larssen P et al (2015) Breast milk and solid food shaping intestinal immunity. Front Immunol 6:415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perello M, Dickson SL (2015) Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. J Neuroendocrinol 27:424–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Sieira S, López M, Nogueiras R, Tovar S (2014) Regulation of NR4A by nutritional status, gender, postnatal development and hormonal deficiency. Sci Rep 4:4264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perge P, Nagy Z, Decmann Á et al (2017) Potential relevance of microRNAs in inter-species epigenetic communication, and implications for disease pathogenesis. RNA Biol 14:391–401

    Article  PubMed  Google Scholar 

  • Petrus NC, Henneman P, Venema A et al (2016) Cow’s milk allergy in Dutch children: an epigenetic pilot survey. Clin Transl Allergy 6:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pieters BC, Arntz OJ, Bennink MB et al (2015) Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β. PLoS One 10:e0121123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE (2012) Bovine milk exosome proteome. J Proteomics 75:1486–1492

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt TA, Sacco RE, Nonnecke BJ, Lippolis JD (2013) Bovine milk proteome: quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. J Proteomics 82:141–154

    Article  CAS  PubMed  Google Scholar 

  • Ruan WY, Bi MY, Feng WW et al (2016) Effect of human breast milk on the expression of proinflammatory cytokines in Caco-2 cells after hypoxia/re-oxygenation. Rev Invest Clin 68:105–111

    CAS  PubMed  Google Scholar 

  • Sasaki H, Shitara M, Yokota K et al (2012) RagD gene expression and NRF2 mutations in lung squamous cell carcinomas. Oncol Lett 4:1167–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiya T, Nakatsukasa H, Lu Q, Yoshimura A (2016) Roles of transcription factors and epigenetic modifications in differentiation and maintenance of regulatory T cells. Microbes Infect 18:378–386

    Article  CAS  PubMed  Google Scholar 

  • Shu J, Chiang K, Zempleni J, Cui J (2015) Computational characterization of exogenous microRNAs that can be transferred into human circulation. PLoS One 10:e0140587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Q, Chen X, Yu J et al (2013) Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell 4:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szyf M, Rouleau J, Theberge J, Bozovic V (1992) Induction of myogenic differentiation by an expression vector encoding the DNA methyltransferase cDNA sequence in the antisense orientation. J Biol Chem 267:12831–12836

    Article  CAS  PubMed  Google Scholar 

  • Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:771–779

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Bian Y, Wang Z et al (2014) MicroRNA-152 regulates DNA methyltransferase 1 and is involved in the development and lactation of mammary glands in dairy cows. PLoS One 9:e101358

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber JA, Baxter DH, Zhang S et al (2010) The mircoRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf T, Baier SR, Zempleni J (2015) The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells. J Nutr 145:2201–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won HY, Hwang ES (2016) Transcriptional modulation of regulatory T cell development by novel regulators NR4As. Arch Pharm Res 39:1530–1536

    Article  CAS  PubMed  Google Scholar 

  • Xu JF, Yang GH, Pan XH et al (2014) Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One 9:e114627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yáñez-Mó M, Siljander PR, Abdreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  • Yeh CM, Chang LY, Lin SH et al (2016) Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer. Sci Rep 6:31690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zempleni J, Aguilar-Lozano A, Sadri M et al (2017) Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants. J Nutr 147:3–10

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ying ZZ, Tang ZL et al (2012) MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem 287:21093–21101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Yang Y, Sun BF et al (2014) FTO and obesity: mechanisms of association. Curr Diab Rep 14:486

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Li M, Wang X et al (2012) Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 8:118–123

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo C. Melnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Melnik, B.C., Kakulas, F. (2019). Milk Exosomes and MicroRNAs: Potential Epigenetic Regulators. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_86

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics