Skip to main content

Gestational Betaine, Liver Metabolism, and Epigenetics

  • Reference work entry
  • First Online:
  • 102 Accesses

Abstract

Betaine is a methyl donor and a substrate of methionine metabolism. It can donate methyl groups to most of methylation reactions in vivo. Diet low in betaine may greatly contribute to metabolic syndrome, lipid disorders, and diabetes. Recent research studies in the field of metabolic programming have demonstrated that betaine plays critical roles in fetal development and hepatic glucolipid metabolism via an array of complex mechanisms. Liver is a central metabolic organ, which is essential in the control of hepatic glucose, lipid, and cholesterol contents in order to maintain metabolic homeostasis in the whole body. The status of hepatic glucolipid metabolism at newborn stage will eventually affect adult health in a long term. Maternal nutrition programs neonatal hepatic metabolism through epigenetic mechanisms such as DNA methylation, histone modifications, and miRNA-mediated post-transcriptional regulation. Betaine is of critical value in maternal nutritional programming. In this chapter, we provide an overview of the recent advances in studies on the role of maternal betaine on offspring hepatic lipid and glucose metabolism, especially during early life. We hope that this knowledge may shed lights on identifying novel prophylactic and therapeutic strategies for metabolic disorders involving disrupted glucose and lipid homeostasis in human and animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACC:

Acetyl-CoA Carboxylase

AHCY:

S-adenosylhomocysteine hydrolase

BHMT:

Betaine homocysteine methyltransferase

CYP27α1:

Cholesterol-27alpha-hydroxylase

CYP7α1:

Cholesterol-7alpha-hydroxylase

DNMTs:

DNA (cytosine-5-)-methyltransferases

FAS:

Fatty acid synthase

FBP1:

Fructose-1, 6-bisphosphatase

G6PC:

Glucose-6-phosphatase

GNMT:

Glycine N-methyltransferase

HMGCR:

3-hydroxy-3-methylglutaryl-CoA reductase

HMTs:

Histone methyltransferases

HPT:

Hypothalamic-pituitary-thyroid

LDLR:

Low-density lipoprotein receptor

MAT:

Methionine adenosyltransferase

PC:

Pyruvate carboxylase

PEPCK:

Phosphoenolpyruvate carboxykinase

SAH:

S-adenosylhomocysteine

SAM:

S-adenosylmethionine

SCD:

Stearoyl-CoA desaturase

SR-BI:

High-density lipoprotein receptor

SREBP1C:

Sterol regulatory element-binding protein-1c

SREBP2:

Sterol regulatory element binding protein-2

TG:

Triglyceride

USF:

Upstream stimulating factor

References

  • Apicella JM, Lee EC, Bailey BL et al (2013) Betaine supplementation enhances anabolic endocrine and Akt signaling in response to acute bouts of exercise. Eur J Appl Physiol 113:793–802

    Article  CAS  Google Scholar 

  • Benediktsson R, Lindsay RS, Noble J et al (1993) Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 341:339–341

    Article  CAS  Google Scholar 

  • Cai D, Jia Y, Lu J et al (2014a) Maternal dietary betaine supplementation modifies hepatic expression of cholesterol metabolic genes via epigenetic mechanisms in newborn piglets. Br J Nutr 112:1459–1468

    Article  CAS  Google Scholar 

  • Cai D, Jia Y, Song H et al (2014b) Betaine supplementation in maternal diet modulates the epigenetic regulation of hepatic gluconeogenic genes in neonatal piglets. PLoS One 9:e105504

    Article  Google Scholar 

  • Cai D, Wang J, Jia Y et al (2016a) Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms. Biochim Biophys Acta 1861:41–50

    Article  CAS  Google Scholar 

  • Cai D, Yuan M, Liu H et al (2016b) Maternal betaine supplementation throughout gestation and lactation modifies hepatic cholesterol metabolic genes in weaning piglets via AMPK/LXR-mediated pathway and histone modification. Nutrients 8:646

    Article  Google Scholar 

  • Cong RH, Jia YM, Li RS et al (2012) Maternal low-protein diet causes epigenetic deregulation of HMGCR and CYP7 alpha 1 in the liver of weaning piglets. J Nutr Biochem 23:1647–1654

    Article  CAS  Google Scholar 

  • Cordero P, Gomez-Uriz AM, Campion J et al (2013) Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr 8:105–113

    Article  CAS  Google Scholar 

  • Donkin SS, Armentano LE (1994) Regulation of gluconeogenesis by insulin and glucagon in the neonatal bovine. Am J Physiol 266:R1229–R1237

    CAS  PubMed  Google Scholar 

  • Edison RJ, Berg K, Remaley A et al (2007) Adverse birth outcome among mothers with low serum cholesterol. Pediatrics 120:723–733

    Article  Google Scholar 

  • Finkelstein JD (2007) Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 45:1694–1699

    Article  CAS  Google Scholar 

  • Ghaddab-Zroud R, Seugnet I, Steffensen KR et al (2014) Liver X receptor regulation of thyrotropin-releasing hormone transcription in mouse hypothalamus is dependent on thyroid status. PLoS One 9:e106983

    Article  Google Scholar 

  • Hu Y, Sun Q, Li X et al (2015) In Ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks. PLoS One 10:e0122643

    Article  Google Scholar 

  • Huang QC, Xu ZR, Han XY et al (2008) Effect of dietary betaine supplementation on lipogenic enzyme activities and fatty acid synthase mRNA expression in finishing pigs. Anim Feed Sci Technol 140:365–375

    Article  CAS  Google Scholar 

  • Jia Y, Song H, Gao G et al (2015) Maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets. J Agric Food Chem 63:10152–10160

    Article  CAS  Google Scholar 

  • Kathirvel E, Morgan K, Nandgiri G et al (2010) Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine. Am J Physiol Gastrointest Liver Physiol 299:G1068–G1077

    Article  CAS  Google Scholar 

  • Kovacheva VP, Mellott TJ, Davison JM et al (2007) Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of Dnmt1 expression. J Biol Chem 282:31777–31788

    Article  CAS  Google Scholar 

  • van Lee L, Tint MT, Aris IM et al (2016) Prospective associations of maternal betaine status with offspring weight and body composition at birth: the GUSTO (Growing up in Singapore toward healthy outcomes) cohort study. Am J Clin Nutr 104:1327

    Article  Google Scholar 

  • Lever M, Slow S (2010) The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem 43:732–744

    Article  CAS  Google Scholar 

  • Lever M, Storer MK, Lewis JG et al (2012) Plasma betaine concentrations correlate with plasma cortisol but not with C-reactive protein in an elderly population. Clin Chem Lab Med 50:1635–1640

    Article  CAS  Google Scholar 

  • Li M, Reynolds CM, Segovia SA et al (2015) Developmental programming of nonalcoholic fatty liver disease: the effect of early life nutrition on susceptibility and disease severity in later life. Biomed Res Int 2015:437107

    PubMed  PubMed Central  Google Scholar 

  • Lillycrop KA, Rodford J, Garratt ES et al (2010) Maternal protein restriction with or without folic acid supplementation during pregnancy alters the hepatic transcriptome in adult male rats. Br J Nutr 103:1711–1719

    Article  CAS  Google Scholar 

  • Matthews JO, Southern LL, Higbie AD et al (2001) Effects of betaine on growth, carcass characteristics, pork quality, and plasma metabolites of finishing pigs. J Anim Sci 79:722–728

    Article  CAS  Google Scholar 

  • Ross AB, Bruce SJ, Blondel-Lubrano A et al (2011) A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and LDL-cholesterol compared with a refined-grain diet in healthy subjects. Br J Nutr 105:1492–1502

    Article  CAS  Google Scholar 

  • Schaefer-Graf UM, Graf K, Kulbacka I et al (2008) Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care 31:1858–1863

    Article  Google Scholar 

  • Schwab U, Torronen A, Toppinen L et al (2002) Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am J Clin Nutr 76:961–967

    Article  CAS  Google Scholar 

  • Sohi G, Marchand K, Revesz A et al (2011) Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7 alpha-hydroxylase promoter. Mol Endocrinol 25:785–798

    Article  CAS  Google Scholar 

  • Sram RJ, Binkova B, Lnenickova Z et al (2005) The impact of plasma folate levels of mothers and newborns on intrauterine growth retardation and birth weight. Mutat Res 591:302–310

    Article  CAS  Google Scholar 

  • Vo T, Hardy DB (2012) Molecular mechanisms underlying the fetal programming of adult disease. J Cell Commun Signal 6:139–153

    Article  Google Scholar 

  • Yang CP, Wang HA, Tsai TH et al (2012) Characterization of the neuropsychological phenotype of glycine N-methyltransferase−/− mice and evaluation of its responses to clozapine and sarcosine treatments. Eur Neuropsychopharmacol 22:596–606

    Article  CAS  Google Scholar 

  • Yu CY, Mayba O, Lee JV et al (2010) Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One 5:e15188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruqian Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cai, D., Liu, H., Hu, Y., Jiang, Y., Zhao, R. (2019). Gestational Betaine, Liver Metabolism, and Epigenetics. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics