Skip to main content

Epigenetic and Metabolism: Glucose and Homeotic Transcription Factor PREP1 VRP Suggested Epigenetics and Metabolism

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Based on current knowledge, it is evident that epigenetic mechanisms contribute to the pathogenesis of type 2 diabetes and its complications. Transient hyperglycemia induces recruitment of the SET7 methyltransferase and H3K4 monomethylation in the promoter of the NF-κB subunit p65 and subsequent expression of NF-κB-dependent genes involved in the progression of diabetic complications.

PREP1 is a gene having a role in insulin sensitivity of glucose transport, as its overexpression causes insulin resistance. In vitro and in vivo exposure to high glucose concentrations increased PREP1 expression levels. This event was preceded by recruitment of NF-κB p65 at the SET7 5′-flanking region, along with recruitment of the SET7 histone methyltransferase and p300 histone acetyltransferase to the same regulatory region. Indeed, high glucose exposure was associated with increased histone H3 Lys4 mono- and dimethylation and Lys9/14 acetylation at the PREP1 promoter. NF-κB recruitment is fundamental in driving the action of epigenetic enzymes at the PREP1 5′ regulatory region, since different NF-κB pharmacologic inhibitors attenuated t3hese effects.

The consequence of PREP1 overexpression is the recruitment of the repressor complex myocyte enhancer factor 2 (MEF2)/histone deacetylase 5 (HDAC5) at the GLUT4 promoter that leads to reduction of its expression. Thus, PREP1 can be considered as a target downstream of NF-κB that is capable to induce insulin resistance in response to hyperglycemia and inflammatory hits. Histone modifications at the PREP1 gene may be responsible for insulin resistance in individuals with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(p)AMPK:

(Phosphorylated)5′AMP-activated protein kinase

AcH3:

Histone H3 acetylation

AGEs:

Advanced glycation end products

ChIP:

Chromatin immunoprecipitation

GLUT4:

Glucose transporter type 4

H3K4me1:

Histone H3 Lys4 monomethylation

H3K4me2:

Histone H3 Lys4 dimethylation

HDAC5:

Histone deacetylase 5

HG:

High glucose

HMOX1:

Heme oxygenase 1

MCP1:

Monocyte chemoattractant protein-1

MEF2:

Myocyte enhancer factor 2

NF-κB:

Nuclear factor κ light chain enhancer of activated B cells

NG:

Normal glucose

PREP1:

Pbx-regulating protein 1

ROS:

Reactive oxygen species

SET7/9:

Su(var)3-9, enhancer-of-zeste, trithorax domain-containing lysine methyltransferase 7

STZ:

Streptozotocin

T2DM:

Type 2 diabetes mellitus

TALE:

Three-amino acid loop extension

VCAM1:

Vascular cell adhesion molecule 1

References

  • Advance Collaborative Group, Patel A, Macmahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572

    Article  Google Scholar 

  • Andersen PH, Lund S, Vestergaard H, Junker S, Kahn BB, Pedersen O (1993) Expression of the major insulin regulable glucose transporter (GLUT4) in skeletal muscle of non insulin-dependent diabetic patients and healthy subjects before and after insulin infusion. J Clin Endocrinol Metab 77:27–32

    CAS  PubMed  Google Scholar 

  • Baker RG, Hayden MS, Ghosh S (2011) NF-kB, inflammation, and metabolic disease. Cell Metab 13:11–22

    Article  CAS  Google Scholar 

  • Berthelsen J, Kilstrup-Nielsen C, Blasi F, Mavilio F, Zappavigna V (1999) The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and hth. Genes Dev 13:946–953

    Article  CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  Google Scholar 

  • Burglin TR (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25:4173–4180

    Article  CAS  Google Scholar 

  • Ceriello A, Inhnat MA, Thorpe JE (2009) Clinical review 2: the “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab 94:410–415

    Article  CAS  Google Scholar 

  • Ciccarelli M, Vastolo V, Albano L, Lecce M, Cabaro S, Liotti A, Longo M, Oriente F, Russo GL, Macchia PE, Formisano P, Beguinot F, Ungaro P (2015) Glucose-induced expression of the homeotic transcription factor PREP1 is associated with histone post-translational modifications in skeletal muscle. Diabetologia 59:176–186

    Article  Google Scholar 

  • Cooper ME, El-Osta A (2010) Epigenetics: mechanisms and implications for diabetic complications. Circ Res 107:1403–1413

    Article  CAS  Google Scholar 

  • Deering TG, Ogihara T, Trace AP, Maier B, Mirmira RG (2009) Methyltransferase SET7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes 58:185–193

    Article  CAS  Google Scholar 

  • Dhayalan A, Kudithipudi S, Rathert P, Jeltsch A (2011) Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chem Biol 18:111–120

    Article  CAS  Google Scholar 

  • El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205:2409–2417

    Article  CAS  Google Scholar 

  • Ferretti E, Villaescusa JC, Di Rosa P, Fernandez-Diaz LC, Longobardi E, Mazzieri R, Miccio A, Micali N, Selleri L, Ferrari G, Blasi F (2006) Hypomorphic mutation of the TALE gene PREP1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype. Mol Cell Biol 26:5650–5662

    Article  CAS  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  CAS  Google Scholar 

  • Keating ST, El-Osta A (2013) Epigenetic changes in diabetes. Clin Genet 84:1–10

    Article  CAS  Google Scholar 

  • Keating ST, Plutzky J, El-Osta A (2016) Epigenetic changes in diabetes and cardiovascular risk. Circ Res 118:1706–1722

    Article  CAS  Google Scholar 

  • King GL, Brownlee M (1996) The cellular and molecular mechanism of diabetic complications. Endocrinol Metab Clin N Am 25:255–270

    Article  CAS  Google Scholar 

  • Kowluru RA, Kowluru V, Xiong Y, Ho YS (2006) Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radic Biol Med 41:1191–1196

    Article  CAS  Google Scholar 

  • Mcgee SL, Hargreaves M (2004) Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53:1208–1214

    Article  CAS  Google Scholar 

  • Mcgee SL, van Denderen BJW, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M (2008) AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57:860–867

    Article  CAS  Google Scholar 

  • Milicevic Z, Raz I, Beattle SD, Campaigne BN, Sarwat S, Gromniak E, Kowalska I, Galic E, Tan M, Hanefeld M (2008) Natural history of cardiovascular disease in patients with diabetes: role of hyperglycemia. Diabetes Care 31:S155–S160

    Article  CAS  Google Scholar 

  • Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 77:S26–S30

    Article  CAS  Google Scholar 

  • Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, Cleary ML (1990) Chromosomal translocation t(1:19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60:535–545

    Article  CAS  Google Scholar 

  • Okabe J, Orlowski C, Balcerczyk A, Tikellis C, Thomas MC, Cooper ME, El-Osta A (2012) Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ Res 110:1067–1076

    Article  CAS  Google Scholar 

  • Oriente F, Fernandez Diaz LC, Miele C, Iovino S, Mori SVMD, Troncone G, Cassese A, Formisano P, Blasi F, Beguinot F (2008) Prep1 deficiency induces protection from diabetes and increased insulin sensitivity through a p160-mediated mechanism. Mol Cell Biol 28:5634–5645

    Article  CAS  Google Scholar 

  • Pirola L, Balcerczyk A, Okabe J, El-Osta A (2010) Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 6:665–675

    Article  CAS  Google Scholar 

  • Reddy MA, Natarajan R (2011) Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res 90:421–429

    Article  CAS  Google Scholar 

  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556

    Article  CAS  Google Scholar 

  • Schmidt A, Hori O, Brett J, Yan SD, Wautier JL, Stern D (1994) Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14:1521–1528

    Article  CAS  Google Scholar 

  • Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805

    Article  CAS  Google Scholar 

  • Steelman S, Moskow JJ, Muzynski K, North C, Druck T, Montgomery JC, Huebner KDIO, Buchberg AM (1997) Identification of a conserved family of meis-related homeobox genes. Genome Res 7:142–156

    Article  CAS  Google Scholar 

  • Tsao TS, Burcelin R, Katz EB, Huang L, Charron MJ (1996) Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle. Diabetes 45:28–36

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  Google Scholar 

  • Zhang Y, Wada J, Hashimoto I, Eguchi J, Yasuhara A, Kanwar YS, Shikata K, Makino H (2006) Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production. J Am Soc Nephrol 17:1090–1101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ungaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Albano, L., Macchia, P.E., Ungaro, P. (2019). Epigenetic and Metabolism: Glucose and Homeotic Transcription Factor PREP1 VRP Suggested Epigenetics and Metabolism. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics