Skip to main content

Epigenetics in Hyperphagia

  • Reference work entry
  • First Online:
  • 154 Accesses

Abstract

The central dogma states that the genetic information, which is contained in the DNA, is transcribed and translated into proteins. We now know that a recently identified novel phenomenon, known as epigenetics, alters gene expression without altering DNA sequences. Thus, this phenomenon alters the central dogma hypothesis. Some of these epigenetic changes are reversible, while some of these changes are heritable; both have the potential to influence every aspect of biology. Furthermore, epigenetic changes happen naturally during environmental changes, during aging, and during disease states. Consequently, epigenetics impacts our daily lives. One such biological process that is impacted by epigenetics is the feeding behavior. Epigenetics supports the theory that life experience can alter your feeding behavior irrespective of one’s genetic makeup. This is because some life experience leaves physical marks on DNA, or epitranscriptome changes alter biological functions of proteins that are involved in feeding behavior. To date, at least five systems have been identified to be involved in epigenetic processes: DNA methylation, histone modification, noncoding RNA (ncRNA) regulation, RNA methylation, and RNA editing. All these processes initiate and sustain epigenetic changes independently. This chapter highlights various epigenetic changes known to regulate and alter gene expressions and how some of these epigenetic changes can directly or indirectly affect an overeating behavior known as hyperphagia, which leads to obesity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5HT2CR:

Serotonin 2C receptor

A to I:

Adenosine to inosine RNA editing

ADAR:

Adenosine deaminase that acts on RNA

DNMT:

DNA methyltransferase

FTO :

Fat mass and obesity-associated gene

HCRT :

Hypocretin (orexin)

m6A:

N6-methyladenosine

MC2R:

Melanocortin receptor

miRNA:

microRNA

ncRNA:

Noncoding RNA

OXTR :

Oxytocin receptor

POMC :

Pro-opiomelanocortin

PWS:

Prader-Willi Syndrome

rRNA:

Ribosomal RNA

snoRNA:

Small nucleolar RNA

snRNA:

Small nuclear RNA

SNRPN:

Small nuclear ribonucleoprotein

tRNA:

Transfer RNA

References

  • Akubuiro A, Bridget Zimmerman M, Boles Ponto LL, Walsh SA, Sunderland J, McCormick L, Singh M (2013) Hyperactive hypothalamus, motivated and non-distractible chronic overeating in ADAR2 transgenic mice. Genes Brain Behav 12:311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519(7544):482–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bali P, Im HI, Kenny PJ (2011) Methylation, memory and addiction. Epigenetics 6(6):671–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  CAS  PubMed  Google Scholar 

  • Bentley DL (2014) Coupling mRNA processing with transcription in time and space. Nat Rev Genet 15(3):163–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR, Morrison C (2008) The brain, appetite, and obesity. Annu Rev Psychol 59:55–92

    Article  PubMed  Google Scholar 

  • Berthoud HR, Lenard NR, Shin AC (2011) Food reward, hyperphagia, and obesity. Am J Physiol Regul Integr Comp Physiol 300(6):R1266–R1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittel DC, Butler MG (2005) Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med 7(14):1–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Burggren W (2016) Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology (Basel) 5(2):24

    Google Scholar 

  • Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387(6630):303–308

    Article  CAS  PubMed  Google Scholar 

  • Butler MG (2011) Prader-Willi syndrome: obesity due to genomic imprinting. Curr Genomics 12(3):204–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassidy SB, Driscoll DJ (2009) Prader-Willi syndrome. Eur J Hum Genet 17(1):3–13

    Article  CAS  PubMed  Google Scholar 

  • Cassidy SB, Schwartz S, Miller JL, Driscoll DJ (2011) Prader-Willi syndrome. Genet Med 14:10–26

    Article  PubMed  CAS  Google Scholar 

  • Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Bruning JC, Nolan PM, Ashcroft FM, Cox RD (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42(12):1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day JJ, Sweatt JD (2011) Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory. Neurobiol Learn Mem 96(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, Brady AF, Fairbrother UL, Dattani M, Keogh JM, Henning E, Yeo GS, O'Rahilly S, Froguel P, Farooqi IS, Blakemore AI (2009) A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 18(17):3257–3265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dimitropoulos A, Feurer ID, Roof E, Stone W, Butler MG, Sutcliffe J, Thompson T (2000) Appetitive behavior, compulsivity, and neurochemistry in Prader-Willi syndrome. Ment Retard Dev Disabil Res Rev 6(2):125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doe CM, Relkovic D, Garfield AS, Dalley JW, Theobald DE, Humby T, Wilkinson LS, Isles AR (2009) Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour. Hum Mol Genet 18(12):2140–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206

    Article  CAS  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463

    Article  CAS  PubMed  Google Scholar 

  • Emeson RB, Singh M (2001) Adenosine to inosine RNA editing: substrates and consequences. RNA editing: frontiers in molecular biology. B. L. Bass. Oxford University Press, London, pp 109–138

    Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feigerlova E, Diene G, Conte-Auriol F, Molinas C, Gennero I, Salles JP, Arnaud C, Tauber M (2008) Hyperghrelinemia precedes obesity in Prader-Willi syndrome. J Clin Endocrinol Metab 93(7):2800–2805

    Article  CAS  PubMed  Google Scholar 

  • Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I, Okamura H (2013) RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155(4):793–806

    Article  CAS  PubMed  Google Scholar 

  • Glatt-Deeley H, Bancescu DL, Lalande M (2010) Prader-Willi syndrome, Snord115, and Htr2c editing. Neurogenetics 11(1):143–144

    Article  PubMed  Google Scholar 

  • Gluckman PD, Hanson MA (2008) Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes 32(Suppl 7):S62–S71

    Article  CAS  Google Scholar 

  • Gluckman PD, Beedle AS, Hanson MA, Yap EP (2008) Developmental perspectives on individual variation: implications for understanding nutritional needs. Nestle Nutr Work Ser Pediatr Prog 62:1–9; disucssion 9–12

    Article  CAS  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638

    Article  CAS  PubMed  Google Scholar 

  • Heymsfield SB, Avena NM, Baier L, Brantley P, Bray GA, Burnett LC, Butler MG, Driscoll DJ, Egli D, Elmquist J, Forster JL, Goldstone AP, Gourash LM, Greenway FL, Han JC, Kane JG, Leibel RL, Loos RJ, Scheimann AO, Roth CL, Seeley RJ, Sheffield V, Tauber M, Vaisse C, Wang L, Waterland RA, Wevrick R, Yanovski JA, Zinn AR (2014) Hyperphagia: current concepts and future directions proceedings of the 2nd international conference on hyperphagia. Obesity (Silver Spring) 22(Suppl 1):S1–S17

    Article  Google Scholar 

  • Holliday R (2002) Epigenetics comes of age in the twenty first century. J Genet 81(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1(2):76–80

    Article  PubMed  Google Scholar 

  • Ivanova E, Kelsey G (2011) Imprinted genes and hypothalamic function. J Mol Endocrinol 47(2):R67–R74

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karra E, O’Daly OG, Choudhury AI, Yousseif A, Millership S, Neary MT, Scott WR, Chandarana K, Manning S, Hess ME, Iwakura H, Akamizu T, Millet Q, Gelegen C, Drew ME, Rahman S, Emmanuel JJ, Williams SC, Ruther UU, Bruning JC, Withers DJ, Zelaya FO, Batterham RL (2013) A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Invest 123(8):3539–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara Y, Grimberg A, Teegarden S, Mombereau C, Liu S, Bale TL, Blendy JA, Nishikura K (2008) Dysregulated editing of serotonin 2C receptor mRNAs results in energy dissipation and loss of fat mass. J Neurosci 28(48):12834–12844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishore S, Khanna A, Zhang Z, Hui J, Balwierz PJ, Stefan M, Beach C, Nicholls RD, Zavolan M, Stamm S (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19(7):1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, Mullen Y, Pfeifer GP, Ferreri K (2009) Insulin gene expression is regulated by DNA methylation. PLoS One 4(9):e6953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li S, Mason CE (2014) The pivotal regulatory landscape of RNA modifications. Annu Rev Genomics Hum Genet 15:127–150

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, Ma H, Han D, Evans M, Klungland A, Pan T, He C (2016) ALKBH1-mediated tRNA demethylation regulates translation. Cell 167(7):1897

    Article  CAS  PubMed  Google Scholar 

  • Marion S, Weiner DM, Caron MG (2004) RNA editing induces variation in desensitization and trafficking of 5-hydroxytryptamine 2c receptor isoforms. J Biol Chem 279(4):2945–2954

    Article  CAS  PubMed  Google Scholar 

  • Melnik BC (2015) Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for western diseases. J Transl Med 13:385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merkestein M, McTaggart JS, Lee S, Kramer HB, McMurray F, Lafond M, Boutens L, Cox R, Ashcroft FM (2014) Changes in gene expression associated with FTO overexpression in mice. PLoS One 9(5):e97162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirch MC, McDuffie JR, Yanovski SZ, Schollnberger M, Tanofsky-Kraff M, Theim KR, Krakoff J, Yanovski JA (2006) Effects of binge eating on satiation, satiety, and energy intake of overweight children. Am J Clin Nutr 84(4):732–738

    Article  CAS  PubMed  Google Scholar 

  • Morabito MV, Abbas AI, Hood JL, Kesterson RA, Jacobs MM, Kump DS, Hachey DL, Roth BL, Emeson RB (2010) Mice with altered serotonin 2C receptor RNA editing display characteristics of Prader-Willi syndrome. Neurobiol Dis 39(2):169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikura K (2016) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17(2):83–96

    Article  CAS  PubMed  Google Scholar 

  • Palou M, Pico C, McKay JA, Sanchez J, Priego T, Mathers JC, Palou A (2011) Protective effects of leptin during the suckling period against later obesity may be associated with changes in promoter methylation of the hypothalamic pro-opiomelanocortin gene. Br J Nutr 106(5):769–778

    Article  CAS  PubMed  Google Scholar 

  • Peters J (2014) The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 15(8):517–530

    Article  CAS  PubMed  Google Scholar 

  • Prohaska KM, Bennett RP, Salter JD, Smith HC (2014) The multifaceted roles of RNA binding in APOBEC cytidine deaminase functions. Wiley Interdiscip Rev RNA 5(4):493–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseboom T, de Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82(8):485–491

    Article  PubMed  Google Scholar 

  • Rosenberg BR, Hamilton CE, Mwangi MM, Dewell S, Papavasiliou FN (2011) Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat Struct Mol Biol 18(2):230–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL (2008) Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40(6):719–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE (2012) The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol 13(10):175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellekens H, Finger BC, Dinan TG, Cryan JF (2012) Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacol Ther 135:316–326

    Article  CAS  PubMed  Google Scholar 

  • Schellekens H, Dinan TG, Cryan JF (2013a) Taking two to tango: a role for ghrelin receptor heterodimerization in stress and reward. Front Neurosci 7:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellekens H, van Oeffelen WE, Dinan TG, Cryan JF (2013b) Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling. J Biol Chem 288(1):181–191

    Article  CAS  PubMed  Google Scholar 

  • Schellekens H, De Francesco PN, Kandil D, Theeuwes WF, McCarthy T, van Oeffelen WE, Perello M, Giblin L, Dinan TG, Cryan JF (2015) Ghrelin’s Orexigenic effect is modulated via a serotonin 2C receptor interaction. ACS Chem Neurosci 6(7):1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Scott MS, Ono M (2011) From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie 93(11):1987–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M (2014) Mood, food, and obesity. Front Psychol 5:925

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh M, Kesterson RA, Jacobs MM, Joers JM, Gore JC, Emeson RB (2007) Hyperphagia-mediated obesity in transgenic mice misexpressing the RNA-editing enzyme ADAR2. J Biol Chem 282(31):22448–22459

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Zimmerman MB, Beltz TG, Johnson AK (2009) Affect-related behaviors in mice misexpressing the RNA editing enzyme ADAR2. Physiol Behav 97(3–4):446–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Singh MM, Na E, Agassandian K, Zimmerman MB, Johnson AK (2011) Altered ADAR 2 equilibrium and 5HT(2C) R editing in the prefrontal cortex of ADAR 2 transgenic mice. Genes Brain Behav 10(6):637–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skibicka KP, Hansson C, Egecioglu E, Dickson SL (2012) Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict Biol 17(1):95–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiger H, Thaler L (2016) Eating disorders, gene-environment interactions and the epigenome: roles of stress exposures and nutritional status. Physiol Behav 162:181–185

    Article  CAS  PubMed  Google Scholar 

  • Tajaddod M, Jantsch MF, Licht K (2016) The dynamic epitranscriptome: a to I editing modulates genetic information. Chromosoma 125(1):51–63

    Article  CAS  PubMed  Google Scholar 

  • Theodoro MF, Talebizadeh Z, Butler MG (2006) Body composition and fatness patterns in Prader-Willi syndrome: comparison with simple obesity. Obesity (Silver Spring) 14(10):1685–1690

    Article  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308(5724):1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veenendaal MV, Painter RC, de Rooij SR, Bossuyt PM, van der Post JA, Gluckman PD, Hanson MA, Roseboom TJ (2013) Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. BJOG 120(5):548–553

    Article  CAS  PubMed  Google Scholar 

  • Wallin MS, Rissanen AM (1994) Food and mood: relationship between food, serotonin and affective disorders. Acta Psychiatr Scand Suppl 377:36–40

    Article  CAS  PubMed  Google Scholar 

  • Werry TD, Loiacono R, Sexton PM, Christopoulos A (2008) RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther 119(1):7–23

    Article  CAS  PubMed  Google Scholar 

  • Witkin KL, Hanlon SE, Strasburger JA, Coffin JM, Jaffrey SR, Howcroft TK, Dedon PC, Steitz JA, Daschner PJ, Read-Connole E (2015) RNA editing, epitranscriptomics, and processing in cancer progression. Cancer Biol Ther 16(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Jones JE, Kohno D, Williams KW, Lee CE, Choi MJ, Anderson JG, Heisler LK, Zigman JM, Lowell BB, Elmquist JK (2008) 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 60(4):582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Xiao X, Zhang Q, Yu M, Xu J, Wang Z, Qi C, Wang T (2015) Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring. Metab Brain Dis 30(5):1129–1137

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minati Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, M. (2019). Epigenetics in Hyperphagia. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics