Skip to main content

Cancer Epigenomics on Precision Medicine and Immunotherapy

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Immunotherapy has rapidly become one of the most promising therapeutic approaches for cancer patients. While significantly improving patients’ survival, immunotherapy presents a unique toxicity profile. However, a large proportion of patients do not achieve optimal and durable responses, due in part to the lack of specific molecular markers that can comprehensively guide patient and therapeutic selection. Precision medicine, involving therapeutic decisions fine-tuned to the genetic makeup of an individual’s tumor, has the potential to profoundly improve the outcomes of patients treated with immunotherapy. Yet, understanding the influence of genetic variations on immunotherapy is just one aspect of developing precision medicine strategies. Epigenomics, and the advent of optimized epigenetic drugs, is emerging as a powerful tool to expand the potential of precision medicine in cancer immunotherapy. The human epigenome represents an exceptional roadmap providing a wealth of information about specific interactions between an individual’s genetic variations and environmental influences. This chapter is focused on the utility in precision medicine of epigenetic variations in the immune-response and immune-escape, and on potential applications for epigenetic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5caC:

5-carboxylcytosine

5fC:

5-formylcytosine

5hmC:

5-hydroxymethylcytosine

5mC:

5-methylcytosine

APC:

Antigen-presenting cell

BRD:

Bromodomain

caQTLs:

Chromatin accessibility quantitative traits loci

CGI:

CpG island

cHL:

Classical Hodgkin lymphoma

CIMP:

CGI methylator phenotype

CTA:

Cancer testis antigen

ctDNA:

Cell-free circulating tumor DNA

CTL:

Cytotoxic T cells

CTLA-4:

Cytotoxic T lymphocyte-associated protein 4

DAMP:

Damage-associated molecular pattern

DC:

Dendritic cell

DNMT:

DNA methyltransferase

DNMTi:

DNMT inhibitor

ENCODE:

Encyclopedia of DNA Elements

eQTLs:

Expression Quantitative Traits Loci

EZH2:

Enhancer of Zeste Homolog 2

GWAS:

Genome-wide association studies

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylases

HDACi:

HDAC inhibitor

hmQTLs:

Histone modification quantitative traits loci

HNSCC:

Head and neck squamous cell carcinoma

ICD:

Immunogenic cell death

INF:

Interferon

MBD:

Methyl-CpG-binding domain

MDSC:

Myeloid-derived suppressor cells

meQTLs:

Methylation quantitative traits loci

MHC:

Major histocompatibility complex

MSI:

Microsatellite instability

NK:

Natural killer

NSCLC:

Non-small-cell lung cancer

PD-1:

Programmed cell death-1

PD-L1:

Programmed cell Death-Ligand 1

PTM:

Posttranslational modification

QTL:

Quantitative traits loci

SNP:

Single-nucleotide polymorphism

TAA:

Tumor-associated antigens

TCR:

T cell receptor

TDG:

Thymine-DNA glycosylase

TET:

Ten-eleven translocation methylcytosine dioxygenases

TF:

Transcription factor

tfQTLs:

Transcription factor quantitative traits loci

TME:

Tumor microenvironment

Treg:

T regulatory cell

TSG:

Tumor suppressor genes

TSS:

Transcription start site

References

  • Alvarez-Errico D, Vento-Tormo R, Sieweke M et al (2015) Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol 15:7–17

    Article  CAS  Google Scholar 

  • Araki Y, Fann M, Wersto R et al (2008) Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). J Immunol 180:8102–8108

    Article  CAS  Google Scholar 

  • Audia JE, Campbell RM (2016) Histone modifications and cancer. Cold Spring Harb Perspect Biol 8:a019521

    Article  Google Scholar 

  • Banovich NE, Lan X, McVicker G et al (2014) Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet 10:e1004663

    Article  Google Scholar 

  • Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375:1767–1778

    Article  CAS  Google Scholar 

  • Cairns P (2007) Gene methylation and early detection of genitourinary cancer: the road ahead. Nat Rev Cancer 7:531–543

    Article  CAS  Google Scholar 

  • Campoli M, Ferrone S (2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27:5869–5885

    Article  CAS  Google Scholar 

  • Chapelle A, Hampel H (2010) Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol 28:3380–3387

    Article  Google Scholar 

  • Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10

    Article  Google Scholar 

  • Chiappinelli KB, Strissel PL, Desrichard A et al (2015) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162:974–986

    Article  CAS  Google Scholar 

  • Chiappinelli KB, Zahnow CA, Ahuja N et al (2016) Combining epigenetic and immunotherapy to combat cancer. Cancer Res 76:1683–1689

    Article  CAS  Google Scholar 

  • Clozel T, Yang S, Elstrom RL et al (2013) Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov 3:1002–1019

    Article  CAS  Google Scholar 

  • Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795

    Article  CAS  Google Scholar 

  • de Maat MF, van de Velde CJ, van der Werff MP et al (2008) Quantitative analysis of methylation of genomic loci in early-stage rectal cancer predicts distant recurrence. J Clin Oncol 26(14):2327–35

    Article  Google Scholar 

  • de Gramont A, Watson S, Ellis LM et al (2015) Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat Rev Clin Oncol 12:197–212

    Article  Google Scholar 

  • Doi A, Park IH, Wen B et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41:1350–1353

    Article  CAS  Google Scholar 

  • ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  Google Scholar 

  • Esteller M, Garcia-Foncillas J, Andion E et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354

    Article  CAS  Google Scholar 

  • Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114

    Article  CAS  Google Scholar 

  • Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153:17–37

    Article  CAS  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  Google Scholar 

  • van Hoesel AQ, Sato Y, Elashoff DA et al (2013) Assessment of DNA methylation status in early stages of breast cancer development. Br J Cancer 108:2033–2038

    Article  Google Scholar 

  • Hoshimoto S, Takeuchi H, Ono S et al (2015) Genome-wide hypomethylation and specific tumor-related gene hypermethylation are associated with esophageal squamous cell carcinoma outcome. J Thorac Oncol 10:509–517

    Article  CAS  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  CAS  Google Scholar 

  • Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17:630–641

    Article  CAS  Google Scholar 

  • Kim JM, Chen DS (2016) Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 27:1492–1504

    Article  CAS  Google Scholar 

  • Kim K, Skora AD, Li Z et al (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA 111:11774–11779

    Article  CAS  Google Scholar 

  • Kopp LM, Ray A, Denman CJ et al (2013) Decitabine has a biphasic effect on natural killer cell viability, phenotype, and function under proliferative conditions. Mol Immunol 54:296–301

    Article  CAS  Google Scholar 

  • Krysko DV, Garg AD, Kaczmarek A et al (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–875

    Article  CAS  Google Scholar 

  • Lian CG, Xu Y, Ceol C et al (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135–1146

    Article  CAS  Google Scholar 

  • Lopez-Soto A, Folgueras AR, Seto E et al (2009) HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumour cells: potential implications for the immunosurveillance of cancer. Oncogene 28:2370–2382

    Article  CAS  Google Scholar 

  • Maecker HL, Yun Z, Maecker HT et al (2002) Epigenetic changes in tumor Fas levels determine immune escape and response to therapy. Cancer Cell 2:139–148

    Article  CAS  Google Scholar 

  • Maio M, Covre A, Fratta E et al (2015) Molecular pathways: at the crossroads of cancer epigenetics and immunotherapy. Clin Cancer Res 21:4040–4047

    Article  CAS  Google Scholar 

  • Marzese DM, Hirose H, Hoon DS (2013) Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev Mol Diagn 13:827–844

    Article  CAS  Google Scholar 

  • Marzese DM, Scolyer RA, Huynh JL et al (2014) Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis. Hum Mol Genet 23:226–238

    Article  CAS  Google Scholar 

  • Moran S, Martinez-Cardus A, Sayols S et al (2016) Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 17:1386–1395

    Article  Google Scholar 

  • Mori T, O’Day SJ, Umetani N et al (2005) Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy. J Clin Oncol 23:9351–9358

    Article  CAS  Google Scholar 

  • Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    Article  CAS  Google Scholar 

  • Odunsi K, Matsuzaki J, James SR et al (2014) Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res 2:37–49

    Article  CAS  Google Scholar 

  • Ogino S, Kawasaki T, Kirkner GJ et al (2007) Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn 9:305–314

    Article  CAS  Google Scholar 

  • Ogino S, Galon J, Fuchs CS et al (2011) Cancer immunology-analysis of host and tumor factors for personalized medicine. Nat Rev Clin Oncol 8:711–719

    Article  CAS  Google Scholar 

  • Palucka AK, Coussens LM (2016) The basis of oncoimmunology. Cell 164:1233–1247

    Article  CAS  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  Google Scholar 

  • Peng D, Kryczek I, Nagarsheth N et al (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527:249–253

    Article  CAS  Google Scholar 

  • Qiu J, Peng B, Tang Y et al (2017) CpG methylation signature predicts recurrence in early-stage hepatocellular carcinoma: results from a multicenter study. J Clin Oncol 35:734–742

    Article  CAS  Google Scholar 

  • Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339

    Article  CAS  Google Scholar 

  • Roulois D, Loo Yau H, Singhania R et al (2015) DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162:961–973

    Article  CAS  Google Scholar 

  • Schadendorf D, Hodi FS, Robert C et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of Ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33:1889–1894

    Article  CAS  Google Scholar 

  • Scharer CD, Barwick BG, Youngblood BA et al (2013) Global DNA methylation remodeling accompanies CD8 T cell effector function. J Immunol 191:3419–3429

    Article  CAS  Google Scholar 

  • Schmidl C, Klug M, Boeld TJ et al (2009) Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res 19:1165–1174

    Article  CAS  Google Scholar 

  • Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–214

    Article  CAS  Google Scholar 

  • Shen J, Wang S, Zhang YJ et al (2013) Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips. Epigenetics 8:34–43

    Article  CAS  Google Scholar 

  • Sigalotti L, Fratta E, Coral S et al (2014) Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol Ther 142:339–350

    Article  CAS  Google Scholar 

  • Simpson AJ, Caballero OL, Jungbluth A et al (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625

    Article  CAS  Google Scholar 

  • Stunnenberg HG, International Human Epigenome C, Hirst M (2016) The international human epigenome consortium: a blueprint for scientific collaboration and discovery. Cell 167:1145–1149

    Article  CAS  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  Google Scholar 

  • Talbert PB, Henikoff S (2010) Histone variants–ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275

    Article  CAS  Google Scholar 

  • Tanemura A, Terando AM, Sim MS et al (2009) CpG island methylator phenotype predicts progression of malignant melanoma. Clin Cancer Res 15:1801–1807

    Article  CAS  Google Scholar 

  • Tough DF, Tak PP, Tarakhovsky A et al (2016) Epigenetic drug discovery: breaking through the immune barrier. Nat Rev Drug Discov 15:835–853

    Article  CAS  Google Scholar 

  • Trynka G, Sandor C, Han B et al (2013) Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 45:124–130

    Article  CAS  Google Scholar 

  • Vivier E, Raulet DH, Moretta A et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  CAS  Google Scholar 

  • Wang L, Amoozgar Z, Huang J et al (2015) Decitabine enhances lymphocyte migration and function and synergizes with CTLA-4 blockade in a murine ovarian cancer model. Cancer Immunol Res 3:1030–1041

    Article  CAS  Google Scholar 

  • Wang C, Gu Y, Zhang K et al (2016a) Systematic identification of genes with a cancer-testis expression pattern in 19 cancer types. Nat Commun 7:10499

    Article  CAS  Google Scholar 

  • Wang J, Wang H, Wang LY et al (2016b) Silencing the epigenetic silencer KDM4A for TRAIL and DR5 simultaneous induction and antitumor therapy. Cell Death Differ 23:1886–1896

    Article  CAS  Google Scholar 

  • Warton K, Mahon KL, Samimi G (2016) Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer 23:R157–R171

    Article  CAS  Google Scholar 

  • Welter D, MacArthur J, Morales J et al (2014) The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

    Article  CAS  Google Scholar 

  • West AC, Mattarollo SR, Shortt J et al (2013) An intact immune system is required for the anticancer activities of histone deacetylase inhibitors. Cancer Res 73:7265–7276

    Article  CAS  Google Scholar 

  • Woods DM, Sodre AL, Villagra A et al (2015) HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res 3:1375–1385

    Article  CAS  Google Scholar 

  • Zhang Y, Kinkel S, Maksimovic J et al (2014) The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124:737–749

    Article  CAS  Google Scholar 

  • Zheng H, Zhao W, Yan C et al (2016) HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin Cancer Res 22:4119–4132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Ian Hutchinson for his critical revision of the manuscript and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier I. J. Orozco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Orozco, J.I.J., Marzese, D.M., Hoon, D.S.B. (2019). Cancer Epigenomics on Precision Medicine and Immunotherapy. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics