Skip to main content

Natural Polyphenol Kaempferol and Its Epigenetic Impact on Histone Deacetylases: Focus on Human Liver Cells

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

The flavonol kaempferol, which is found in many vegetables and fruits, is suggested to exhibit various and promising beneficial health effects in vitro and in vivo. Although there is strong evidence for health-promoting effects and good tolerability of kaempferol as common ingredient of daily nutrition, only little is known about the underlying pharmacodynamics and especially kaempferol-mediated effects on liver gene expression, enzyme levels, and phase I metabolism. Noteworthy, recent studies revealed that kaempferol is an interesting inhibitor of histone deacetylases with high affinity toward all members of HDAC families I, II, and IV that were tested. Therefore, the epigenetic activity of kaempferol could, at least in part, be responsible for the promising health effects and remain to be intensively studied in vivo. Investigation of hepatotoxic effects and interactions with CYP450 enzymes is one of the major prerequisites for a possible clinical use of kaempferol. Therefore, preclinical evaluation of high doses of kaempferol was performed with primary human hepatocytes, which are widely used as valuable tools to predict toxic drug effects on the human liver. Additionally, an in vivo chicken embryotoxicity assay to check for embryotoxic effects yielded good tolerability of kaempferol. According to the promising preliminary results, it would be important to evaluate long-term effects of low physiological doses of kaempferol compared to interventions with high pharmacological doses in future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B[a]P:

Benzo[a]pyrene

CDK1:

Cyclin-dependent kinase 1

CYP:

Cytochrome P450

DMBA:

7,12-Dimethylbenz[a]anthracene

DNMT:

DNA methyl transferase

GSTP1–1:

Glutathione S-transferase Pi 1 peptide 1

HAT:

Histone acetyl transferase

HCC:

Hepatocellular carcinoma

HDAC:

Histone deacetylase

PHH:

Primary human hepatocyte

P-PST:

Phenol-sulfating form of phenol sulfotransferase

QR:

Quinone reductase

SAHA:

Suberoylanilide hydroxamic acid

SIRT:

Sirtuin

SULT1A1:

Sulfotransferase family 1A Member 1

SULT1E1:

Sulfotransferase family 1E Member 1

TCDD:

2,3,7,8-Tetrachlorodibenzo-p-dioxin

TSA:

Trichostatin A

TS-PST:

Thermostable phenol sulfotransferase

UDP:

Uridine diphosphate

UGT:

UDP-glucuronyl transferase

References

  • Barve A, Chen C, Hebbar V et al (2009) Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm Drug Dispos 30:356–365

    Article  CAS  Google Scholar 

  • Berger A, Venturelli S, Kallnischkies M et al (2013) Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 24:977–985

    Article  CAS  Google Scholar 

  • Busch C, Burkard M, Leischner C et al (2015) Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin Epigenetics 7:64

    Article  Google Scholar 

  • Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C et al (2011) A review on the dietary flavonoid Kaempferol. Mini-Rev Med Chem 11:298–344

    Article  CAS  Google Scholar 

  • Cermak R, Landgraf S, Wolffram S (2003) The bioavailability of quercetin in pigs depends on the glycoside moiety and on dietary factors. J Nutr 133:2802–2807

    Article  CAS  Google Scholar 

  • Chang TKH, Chen J, Yeung EYH (2006) Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1. Toxicol Appl Pharmacol 213:18–26

    Article  CAS  Google Scholar 

  • Choi EJ, Ahn WS (2008) Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr Res Pract 2:322–325

    Article  CAS  Google Scholar 

  • Ciolino HP, Yeh GC (1999) The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor. Br J Cancer 79:1340–1346

    Article  CAS  Google Scholar 

  • Dashwood RH (2007) Frontiers in polyphenols and cancer prevention. J Nutr 137:267S–269S

    Article  CAS  Google Scholar 

  • De Leo M, Braca A, Sanogo R et al (2006) Antiproliferative activity of Pteleopsis suberosa leaf extract and its flavonoid components in human prostate carcinoma cells. Planta Med 72:604–610

    Article  Google Scholar 

  • Dupont MS, Day AJ, Bennett RN et al (2004) Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans. Eur J Clin Nutr 58:947–954

    Article  CAS  Google Scholar 

  • Eaton EA, Walle UK, Lewis AJ et al (1996) Flavonoids, potent inhibitors of the human P-form phenolsulfotransferase. Potential role in drug metabolism and chemoprevention. Drug Metab Dispos 24:232–237

    CAS  PubMed  Google Scholar 

  • El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142:1264–1273. e1

    Article  Google Scholar 

  • Gilbert ER, Liu D (2010) Flavonoids influence epigenetic-modifying enzyme activity: structure - function relationships and the therapeutic potential for cancer. Curr Med Chem 17:1756–1768

    Article  CAS  Google Scholar 

  • Griffiths LA, Smith GE (1972) Metabolism of myricetin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem J 130:141–151

    Article  CAS  Google Scholar 

  • Herrmann K (1988) On the occurrence of flavonol and flavone glycosides in vegetables. Zeitschrift für Lebensmittel-Untersuchung und Forschung 186:1–5

    Article  CAS  Google Scholar 

  • Hertog MGL, Hollman PCH, Katan MB (1992) Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agric Food Chem 40:2379–2383

    Article  CAS  Google Scholar 

  • Hertog MG, Hollman PC, Katan MB et al (1993a) Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer 20:21–29

    Article  CAS  Google Scholar 

  • Hertog MGL, Hollman PCH, Van De Putte B (1993b) Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J Agric Food Chem 41:1242–1246

    Article  CAS  Google Scholar 

  • Hertog MG, Kromhout D, Aravanis C et al (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155:381–386

    Article  CAS  Google Scholar 

  • Ho PC, Saville DJ, Wanwimolruk S (2001) Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds. J Pharm Pharm Sci 4:217–227

    CAS  PubMed  Google Scholar 

  • Hollman PCH (2004) Absorption, bioavailability, and metabolism of flavonoids. Pharm Biol 42:74–83

    Article  CAS  Google Scholar 

  • Hollman PCH, Arts ICW (2000) Flavonols, flavones and flavanols – nature, occurrence and dietary burden. J Sci Food Agric 80:1081–1093

    Article  CAS  Google Scholar 

  • Huang WW, Chiu YJ, Fan MJ et al (2010) Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma U-2 OS cells. Mol Nutr Food Res 54:1585–1595

    Article  CAS  Google Scholar 

  • Jaganathan SK, Mandal M (2009) Antiproliferative effects of honey and of its polyphenols: a review. J Biomed Biotechnol 830616:19

    Google Scholar 

  • Justesen U, Knuthsen P, Leth T (1998) Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J Chromatogr A 799:101–110

    Article  CAS  Google Scholar 

  • Kang ZC, Tsai SJ, Lee H (1999) Quercetin inhibits benzo[a]pyrene-induced DNA adducts in human Hep G2 cells by altering cytochrome P-450 1A1 gene expression. Nutr Cancer 35:175–179

    Article  CAS  Google Scholar 

  • Kang JW, Kim JH, Song K et al (2010) Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase-3-dependent apoptosis in oral cavity cancer cells. Phytother Res 24(Suppl 1):S77–S82

    Article  Google Scholar 

  • Kao YC, Zhou C, Sherman M et al (1998) Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: a site-directed mutagenesis study. Environ Health Perspect 106:85–92

    Article  CAS  Google Scholar 

  • Kim SH, Choi KC (2013) Anti-cancer effect and underlying mechanism(s) of Kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol Res 29:229–234

    Article  CAS  Google Scholar 

  • Kim KS, Rhee KH, Yoon JH et al (2005) Ginkgo biloba Extract (EGb 761) induces apoptosis by the activation of caspase-3 in oral cavity cancer cells. Oral Oncol 41:383–389

    Article  Google Scholar 

  • Knekt P, Jarvinen R, Reunanen A et al (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 312:478–481

    Article  CAS  Google Scholar 

  • Koneru M, Sahu BD, Kumar JM et al (2016) Fisetin protects liver from binge alcohol-induced toxicity by mechanisms including inhibition of matrix metalloproteinases (MMPs) and oxidative stress. J Funct Foods 22:588–601

    Article  CAS  Google Scholar 

  • Lee WJ, Chen YR, Tseng TH (2011) Quercetin induces FasL-related apoptosis, in part, through promotion of histone H3 acetylation in human leukemia HL-60 cells. Oncol Rep 25:583–591

    CAS  PubMed  Google Scholar 

  • Leung HW, Lin CJ, Hour MJ et al (2007) Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. Food Chem Toxicol 45:2005–2013

    Article  CAS  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485S

    Article  CAS  Google Scholar 

  • Marfe G, Tafani M, Indelicato M et al (2009) Kaempferol induces apoptosis in two different cell lines via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction. J Cell Biochem 106:643–650

    Article  CAS  Google Scholar 

  • Mutoh M, Takahashi M, Fukuda K et al (2000) Suppression of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells by chemopreventive agents with a resorcin-type structure. Carcinogenesis 21:959–963

    Article  CAS  Google Scholar 

  • Nemeth K, Plumb GW, Berrin JG et al (2003) Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr 42:29–42

    Article  CAS  Google Scholar 

  • Nugala B, Namasi A, Emmadi P et al (2012) Role of green tea as an antioxidant in periodontal disease: the Asian paradox. J Indian Soc Periodontol 16:313–316

    Article  Google Scholar 

  • Obach RS (2000) Inhibition of human cytochrome P450 enzymes by constituents of St. John's wort, an herbal preparation used in the treatment of depression. J Pharmacol Exp Ther 294:88–95

    CAS  PubMed  Google Scholar 

  • Ohkimoto K, Liu MY, Suiko M et al (2004) Characterization of a zebrafish estrogen-sulfating cytosolic sulfotransferase: inhibitory effects and mechanism of action of phytoestrogens. Chem Biol Interact 147:1–7

    Article  CAS  Google Scholar 

  • Ong KC, Khoo HE (2000) Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci 67:1695–1705

    Article  CAS  Google Scholar 

  • Ong TP, Moreno FS, Ross SA (2011) Targeting the epigenome with bioactive food components for cancer prevention. J Nutrigenet Nutrigenomics 4:275–292

    Article  CAS  Google Scholar 

  • Price KR, Casuscelli F, Colquhoun IJ et al (1998a) Composition and content of flavonol glycosides in broccoli florets (brassica olearacea) and their fate during cooking. J Sci Food Agric 77:468–472

    Article  CAS  Google Scholar 

  • Price KR, Rhodes MJC, Barnes KA (1998b) Flavonol glycoside content and composition of tea infusions made from commercially available teas and tea products. J Agric Food Chem 46:2517–2522

    Article  CAS  Google Scholar 

  • Semwal DK, Semwal RB, Combrinck S et al (2016) Myricetin: a dietary molecule with diverse biological activities. Forum Nutr 8:90

    Google Scholar 

  • Sesink AL, Arts IC, Faassen-Peters M et al (2003) Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. J Nutr 133:773–776

    Article  CAS  Google Scholar 

  • Shih TY, Young TH, Lee HS et al (2013) Protective effects of Kaempferol on isoniazid- and rifampicin-induced hepatotoxicity. AAPS J 15:753–762

    Article  CAS  Google Scholar 

  • Sun XY, Plouzek CA, Henry JP et al (1998) Increased UDP-glucuronosyltransferase activity and decreased prostate specific antigen production by biochanin a in prostate cancer cells. Cancer Res 58:2379–2384

    CAS  PubMed  Google Scholar 

  • Tsyrlov IB, Mikhailenko VM, Gelboin HV (1994) Isozyme- and species-specific susceptibility of cDNA-expressed CYP1A P-450s to different flavonoids. Biochim Biophys Acta 13:325–335

    Article  Google Scholar 

  • Uda Y, Price KR, Williamson G et al (1997) Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids. Cancer Lett 120:213–216

    Article  CAS  Google Scholar 

  • Van Der Logt EM, Roelofs HM, Nagengast FM et al (2003) Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis 24:1651–1656

    Article  Google Scholar 

  • Van Zanden JJ, Ben Hamman O, Van Iersel ML et al (2003) Inhibition of human glutathione S-transferase P1-1 by the flavonoid quercetin. Chem Biol Interact 145:139–148

    Article  Google Scholar 

  • Vicente-Sanchez C, Egido J, Sanchez-Gonzalez PD et al (2008) Effect of the flavonoid quercetin on cadmium-induced hepatotoxicity. Food Chem Toxicol 46:2279–2287

    Article  CAS  Google Scholar 

  • Vidhya A, Indira M (2009) Protective effect of quercetin in the regression of ethanol-induced hepatotoxicity. Indian J Pharm Sci 71:527–532

    Article  CAS  Google Scholar 

  • Walle UK, Walle T (2002) Induction of human UDP-glucuronosyltransferase UGT1A1 by flavonoids-structural requirements. Drug Metab Dispos 30:564–569

    Article  CAS  Google Scholar 

  • Wang Y, Tang CY, Zhang H (2015) Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. J Food Drug Anal 23:310–317

    Article  CAS  Google Scholar 

  • Williams JA, Ring BJ, Cantrell VE et al (2002) Differential modulation of UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed estradiol-3-glucuronidation by the addition of UGT1A1 substrates and other compounds to human liver microsomes. Drug Metab Dispos 30:1266–1273

    Article  CAS  Google Scholar 

  • Wolffram S, Block M, Ader P (2002) Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. J Nutr 132:630–635

    Article  CAS  Google Scholar 

  • Zhai S, Dai R, Friedman FK et al (1998) Comparative inhibition of human cytochromes P450 1A1 and 1A2 by flavonoids. Drug Metab Dispos 26:989–992

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Burkard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Venturelli, S., Leischner, C., Burkard, M. (2019). Natural Polyphenol Kaempferol and Its Epigenetic Impact on Histone Deacetylases: Focus on Human Liver Cells. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics