Skip to main content

Epigenetics and Minerals: An Overview

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 147 Accesses

Abstract

Epigenetics plays a decisive role in gene regulation and is vulnerable to environmental challenges, including supply with nutritional factors, such as minerals. The observation that the function of epigenetically active enzymes requires cofactors such as minerals supports this hypothesis. Data are available that reveal direct and indirect effects of essential minerals on the methylation status of the DNA, on epigenetic modifications of histones, and on the regulation of RNA interference. As is true for most epigenetically active factors, the mineral balance mostly effects the epigenome generation during embryonic development, but changes can be induced throughout life as part of lifelong epigenome editing. It has indeed been suggested that changes induced by minerals cumulate during aging and can be passed on to the next generation. Together, this suggests the use of mineral supplementation to prevent dysplasia originating from errors in establishing the epigenome or correct epigenetic disturbances. Despite immense advances in recent years, literature on the impact of minerals on the epigenome is still scarce compared to our general knowledge in nutritional epigenetics. This chapter provides an overview over epigenetic activities of calcium, chromium, manganese, magnesium, iron, selenium, and zinc and briefly mentions data for molybdenum and mineral mixes. An association between disturbed mineral balance, epigenetics, and certain types of diseases will be addressed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDNF:

Brain-derived neurotrophic factor

HDAC:

Histone deacetylase

hTMA:

Hair tissue mineral analysis

ICP-AES:

Inductively coupled plasma-atomic emission spectroscopy

References

  • Akey DL, Li S, Konwerski JR et al (2011) A new structural form in the SAM/metal-dependent omethyltransferase family: MycE from the mycinamicin biosynthetic pathway. J Mol Biol 413:438–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alegria-Torres JA, Baccarelli A, Bollati V (2011) Epigenetics and lifestyle. Epigenomics 3:267–277

    Article  PubMed  Google Scholar 

  • Ali AH, Kondo K, Namura T et al (2011) Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog 50:89–99

    Article  CAS  PubMed  Google Scholar 

  • Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Asp Med 26:353–362

    Article  CAS  Google Scholar 

  • Black RE (2001) Micronutrients in pregnancy. Br J Nutr 85(Suppl 2):S193–S197

    Article  CAS  PubMed  Google Scholar 

  • Brown AS, Susser ES (2008) Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull 34:1054–1063

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunner C, Wuillemin WA (2010) Iron deficiency and iron deficiency anemia – symptoms and therapy. Ther Umsch 67

    Google Scholar 

  • Brunst KJ, Leung YK, Ryan PH et al (2013) Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. J Allergy Clin Immunol 131:592–594

    Article  CAS  PubMed  Google Scholar 

  • Camaschella C (2013) Iron and hepcidin: a story of recycling and balance. Hematol Am Soc Hematol Educ Program 2013:1–8

    Article  Google Scholar 

  • Chen J, Du C, Kang J et al (2008) Cu2+ is required for pyrrolidine dithiocarbamate to inhibit histone acetylation and induce human leukemia cell apoptosis. Chem Biol Interact 171:26–36

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, Mao FC, Liu CH et al (2016) Chromium supplementation improved post-stroke brain infarction and hyperglycemia. Metab Brain Dis 31:289–297

    Article  CAS  PubMed  Google Scholar 

  • Chervona Y, Arita A, Costa M (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4:619–627

    Article  CAS  PubMed  Google Scholar 

  • Christensen BC, Marsit CJ (2011) Epigenomics in environmental health. Front Genet 2:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ergaz Z, Guillemin C, Neeman-Azulay M et al (2014) Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat. Toxicol Appl Pharmacol 276:220–230

    Article  CAS  PubMed  Google Scholar 

  • Godfrey KM, Barker DJ (2001) Fetal programming and adult health. Public Health Nutr 4:611–624

    Article  CAS  PubMed  Google Scholar 

  • Graff J, Tsai LH (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14:97–111

    Article  PubMed  Google Scholar 

  • He J, Qian X, Carpenter R et al (2013) Repression of miR-143 mediates Cr (VI)-induced tumor angiogenesis via IGF-IR/IRS1/ERK/IL-8 pathway. Toxicol Sci 134:26–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho SM, Johnson A, Tarapore P et al (2012) Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J 53:289–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Tian F, Du Y et al (2008) BHLHB2 controls Bdnf promoter 4 activity and neuronal excitability. J Neurosci 28:1118–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahmann L, Uciechowski P, Warmuth S et al (2008) Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Res 11:227–237

    Article  CAS  PubMed  Google Scholar 

  • Kambe T, Weaver BP, Andrews GK (2008) The genetics of essential metal homeostasis during development. Genesis 46:214–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Lin C, Chen J et al (2004) Copper induces histone hypoacetylation through directly inhibiting histone acetyltransferase activity. Chem Biol Interact 148:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kanherkar RR, Bhatia-Dey N, Csoka AB (2014) Epigenetics across the human lifespan. Front Cell Dev Biol 2:49

    PubMed  PubMed Central  Google Scholar 

  • Karavelas T, Mylonas M, Malandrinos G et al (2005) Coordination properties of cu(II) and Ni(II) ions towards the C-terminal peptide fragment -EL. J Inorg Biochem 99:606–615

    Article  CAS  PubMed  Google Scholar 

  • Keen CL, Hanna LA, Lanoue L et al (2003) Developmental consequences of trace mineral deficiencies in rodents: acute and long-term effects. J Nutr 133:1477S–1480S

    Article  CAS  PubMed  Google Scholar 

  • Kessels JE, Wessels I, Haase H et al (2016) Influence of DNA-methylation on zinc homeostasis in myeloid cells: regulation of zinc transporters and zinc binding proteins. J Trace Elem Med Biol 37:125–133

    Article  CAS  PubMed  Google Scholar 

  • Kim AM, Vogt S, O'Halloran TV et al (2010) Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol 6:674–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloubert V, Rink L (2015) Zinc as a micronutrient and its preventive role of oxidative damage in cells. Food Funct 6:3195–3204

    Article  CAS  PubMed  Google Scholar 

  • Komiya Y, Su LT, Chen HC et al (2014) Magnesium and embryonic development. Magnes Res 27:1–8

    PubMed  PubMed Central  Google Scholar 

  • Kong BY, Bernhardt ML, Kim AM et al (2012) Zinc maintains prophase I arrest in mouse oocytes through regulation of the MOS-MAPK pathway. Biol Reprod 87:11,1–11,12

    Article  Google Scholar 

  • Lou J, Wang Y, Yao C et al (2013) Role of DNA methylation in cell cycle arrest induced by Cr (VI) in two cell lines. PLoS One 8:e71031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyko F, Foret S, Kucharski R et al (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8:e1000506

    Article  PubMed  PubMed Central  Google Scholar 

  • MacGregor JT (1990) Dietary factors affecting spontaneous chromosomal damage in man. Prog Clin Biol Res 347:139–153

    CAS  PubMed  Google Scholar 

  • Martinez-Zamudio R, Ha HC (2011) Environmental epigenetics in metal exposure. Epigenetics 6:820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maywald M, Rink L (2015) Zinc homeostasis and immunosenescence. J Trace Elem Med Biol 29:24–30

    Article  CAS  PubMed  Google Scholar 

  • Metes-Kosik N, Luptak I, Dibello PM et al (2012) Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redox-methylation balance. Mol Nutr Food Res 56:1812–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayan V, Ravindra KC, Liao C et al (2015) Epigenetic regulation of inflammatory gene expression in macrophages by selenium. J Nutr Biochem 26:138–145

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    Article  CAS  PubMed  Google Scholar 

  • Nepravishta R, Bellomaria A, Polizio F et al (2010) Reticulon RTN1-C(CT) peptide: a potential nuclease and inhibitor of histone deacetylase enzymes. Biochemistry 49:252–258

    Article  CAS  PubMed  Google Scholar 

  • Ollig J, Kloubert V, Wessels I et al (2016) Parameters influencing zinc in experimental systems in vivo and in vitro. Metals 6

    Google Scholar 

  • Pilsner JR, Hall MN, Liu X et al (2011) Associations of plasma selenium with arsenic and genomic methylation of leukocyte DNA in Bangladesh. Environ Health Perspect 119:113–118

    Article  CAS  PubMed  Google Scholar 

  • Raynal NJ, Lee JT, Wang Y et al (2016) Targeting calcium signaling induces epigenetic reactivation of tumor suppressor genes in cancer. Cancer Res 76:1494–1505

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz E, Metz CH, Maywald M et al (2016) Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol Nutr Food Res 60:661–671

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Nguyen H, Geng C et al (2014) Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes. Proc Natl Acad Sci U S A 111:E4920–E4928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Liu C, Liu Y et al (2014) Changes in the expression of epigenetic factors during copper-induced apoptosis in PC12 cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zhou X, Chen H et al (2009) Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium. Toxicol Appl Pharmacol 237:258–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunda WG (2012) Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front Microbiol 3:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Takaya J, Iharada A, Okihana H et al (2013) A calcium-deficient diet in pregnant, nursing rats induces hypomethylation of specific cytosines in the 11beta-hydroxysteroid dehydrogenase-1 promoter in pup liver. Nutr Res 33:961–970

    Article  CAS  PubMed  Google Scholar 

  • Tarale P, Chakrabarti T, Sivanesan S et al (2016) Potential role of epigenetic mechanism in manganese induced neurotoxicity. Biomed Res Int 2016:2548792

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian X, Diaz FJ (2013) Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol 376:51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uthus EO, Ross S (2009) Dietary selenium (Se) and copper (Cu) interact to affect homocysteine metabolism in rats. Biol Trace Elem Res 129:213–220

    Article  CAS  PubMed  Google Scholar 

  • Uusi-Rasi K, Karkkainen MU, Lamberg-Allardt CJ (2013) Calcium intake in health maintenance – a systematic review. Food Nutr Res 57

    Google Scholar 

  • Wallwork JC, Duerre JA (1985) Effect of zinc deficiency on methionine metabolism, methylation reactions and protein synthesis in isolated perfused rat liver. J Nutr 115:252–262

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Shiraki A, Itahashi M et al (2013) Aberration in epigenetic gene regulation in hippocampal neurogenesis by developmental exposure to manganese chloride in mice. Toxicol Sci 136:154–165

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wu Z, Li D et al (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17:282–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts DL (2015) Nutrition, epigenetics and hair tissue mineral analysis (HTMA). Trace Elements Newsl 26:1–3

    Google Scholar 

  • Wessels I (2014) Epigenetics and metal deficiencies. Curr Nutr Rep 3

    Google Scholar 

  • Wessels I. (2015) Metal homeostastis during development, maturation, and aging, SFR 16:ISBN 978-0-262-02919-3

    Google Scholar 

  • Wessels I, Haase H, Engelhardt G et al (2013) Zinc deficiency induces production of the proinflammatory cytokines IL-1beta and TNFalpha in promyeloid cells via epigenetic and redox-dependent mechanisms. J Nutr Biochem 24:289–297

    Article  CAS  PubMed  Google Scholar 

  • Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14:1847–1850

    Article  CAS  Google Scholar 

  • Wong CP, Rinaldi NA, Ho E (2015) Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol Nutr Food Res 59:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood RJ (2009) Manganese and birth outcome. Nutr Rev 67:416–420

    Article  PubMed  Google Scholar 

  • Wright RO, Baccarelli A (2007) Metals and neurotoxicology. J Nutr 137:2809–2813

    Article  CAS  PubMed  Google Scholar 

  • Xia B, Yang LQ, Huang HY et al (2011) Chromium (VI) causes down regulation of biotinidase in human bronchial epithelial cells by modifications of histone acetylation. Toxicol Lett 205:140–145

    Article  CAS  PubMed  Google Scholar 

  • Zhang FF, Cardarelli R, Carroll J et al (2011) Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics 6:293–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24:1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Wessels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wessels, I. (2019). Epigenetics and Minerals: An Overview. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics