Skip to main content

Regulatory Roles of PARP-1 and Lipids in Epigenetic Mechanisms

  • Reference work entry
  • First Online:

Abstract

Epigenetic modifications, reversibly controlling gene expression, are crucial for interpreting the genome under the influence of physiological factors. The basic processes (DNA methylation and histone modification, DNA accessibility, and chromatin structure) which characterize epigenetics are regulated by an orchestrated series of events. The spectrum of these events is becoming wider and wider, increasing the complexity of the interplay between the basic processes and the multiple side mechanisms responsive to environmental stimuli. The “histone code hypothesis” suggests that combinations of different histone modifications may regulate chromatin structure and transcriptional activity. Among these modifications, a crucial role is played by poly(ADP-ribosyl)ation, the reaction catalyzed by poly(ADP-ribose)polymerase-1 widely recognized as a “genome guardian” for driving the repair of damaged DNA. Increasing evidence indicates also that alterations in membrane phospholipid composition and lipid metabolism may play a role in epigenetics. Moreover, a “lipid code” has been proposed since in the nucleus a lipid fraction is present that seems tightly bound to DNA.

This review will analyze these topics and their possible interplay in epigenetic regulation and discuss the relative role of nutritional and environmental challenges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

4-HNE:

4-Hydroxynonenale

ADP-ribose:

Adenosine diphosphate ribose

AMPK:

5′-Adenosine monophosphate-activated protein kinase

COX:

Cyclooxygenase

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

ER:

Estrogen receptor

FASN:

Fatty acid synthase

FOXO1:

Forkhead box protein O1

HDAC:

Histone deacetylase

LOX:

Lipoxygenase

MCF-7:

Michigan cancer foundation-7

mtDNA:

Mitochondrial DNA

mTOR:

Mammalian target of rapamycin

NAD+:

Nicotinamide adenine dinucleotide

ncRNA:

Noncoding RNA

NF-κB:

Nuclear factor-κB

PAR:

Poly(ADP-ribose)

PARP:

poly(ADP-ribose)polymerase

PKCζ:

Protein kinase C ζ

PPAR:

Peroxisome proliferator-activating receptor

PUFA:

Polyunsaturated fatty acid

RAF:

Rapidly accelerated fibrosarcoma

ROS:

Reactive oxygen species

SIRT1:

Sirtuin 1

SREBP:

Sterol regulatory element-binding protein

STAT3:

Signal transducer and activator of transcription 3

References

  • Albi E, Viola Magni MP (2004) The role of intranuclear lipids. Biol Cell 96(8):657–667

    Article  CAS  Google Scholar 

  • Altmeyer M, Hottiger MO (2009) Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging. Aging (Albany NY) 1(5):458–469

    Google Scholar 

  • Baenke F, Peck B, Miess H, Schulze A (2013) Hooked on fat: the role of lipid synthesis in cancer metabolism and tumor development. Dis Model Mech 6(6):1353–1363

    Article  CAS  Google Scholar 

  • Bai P, Cantò C (2012) The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab 16(3):290–295

    Article  CAS  Google Scholar 

  • Balla T (2016) Cell biology: lipid code for membrane recycling. Nature 529(7586):292–293

    Article  CAS  Google Scholar 

  • Beneke S (2012) Regulation of chromatin structure by poly(ADP-ribosyl)ation. Front Genet 3:169

    Article  CAS  Google Scholar 

  • Beneke S, Bürkle A (2007) Poly(ADP-ribosyl)ation in mammalian aging. Nucl Ac Res 35(22):7456–7465

    Article  CAS  Google Scholar 

  • Bianchi AR, Ferreri C, Ruggiero S, Deplano S et al (2016) Automodification of PARP and fatty acid-based membrane lipidome as a promising integrated biomarker panel in molecular medicine. Biomark Med 10(3):229–242

    Article  CAS  Google Scholar 

  • Bolognesi A, Chatgilialoglu A, Polito L, Ferreri C (2013) Membrane lipidome reorganization correlates with the fate of neuroblastoma cells supplemented with fatty acids. PLoS One 8(2):e55537

    Article  CAS  Google Scholar 

  • Caiafa P (2000–2013) PARP and epigenetic regulation. In: Madame Curie bioscience database. Landes Bioscience, Austin

    Google Scholar 

  • Calder PC (2001) Polyunsaturated fatty acids, inflammation, and immunity. Lipids 36:1007–1024

    Article  CAS  Google Scholar 

  • Cantó C, Sauve AA, Bai P (2013) Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Asp Med 34(6). https://doi.org/10.1016/j.mam.2013.01.004

  • Caron A, Richard D, Laplante M (2015) The roles of mTOR complexes in lipid metabolism. Annu Rev Nutr 35:321–348

    Article  CAS  Google Scholar 

  • Choi SW, Friso S (2010) Epigenetics: a new bridge between nutrition and health. Adv Nutr 1:8–16

    Article  CAS  Google Scholar 

  • Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz A et al (2014) Acetate dependence of tumors. Cell 159(7):1591–1602

    Article  CAS  Google Scholar 

  • Davie JR (2003) Inhibition of histone deacetylase activity by Butyrate. J Nutr 133(7):2485S–2493S

    Article  CAS  Google Scholar 

  • Deckelbaum RJ, Worgall TS, Seo T (2006) n-3 fatty acids and gene expression. Am J Clin Nutr 83:1520S–1525S

    Article  CAS  Google Scholar 

  • Erener S, Hesse M, Kostadinova R, Hottiger MO (2012) PARP1 controls adipogenic gene expression and adipocyte function. Mol Endocrinol 26(1):79–86

    Article  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free RadicBiol Med 11:81–128

    Article  CAS  Google Scholar 

  • Faraone Mennella MR (2011) Mammalian spermatogenesis, DNA repair, Poly(ADP-ribose) turnover: the state of the art. In: Storici F (ed) On the pathways to fixing DNA damage and errors. InTech, pp 235–254. https://doi.org/10.5772/23337

  • Faraone-Mennella MR (2015) A new facet of ADP-ribosylation reactions: SIRTs and PARPs interplay. Front Biosc (Landmark Edition) 20:458–473

    Article  Google Scholar 

  • Ferreri C, Chatgilialoglu C (2012) Role of fatty acid-based functional lipidomics in the development of molecular diagnostic tools. Expert Rev Mol Diagn 12:767–780

    Article  CAS  Google Scholar 

  • Ferreri C, Chatgilialoglu C (2015) Membrane lipidomics for personalized health. Wiley, New York

    Book  Google Scholar 

  • Ferreri C, Masi A, Sansone A, Giacometti G, Larocca AV, Menounou G, Scanferlato R, Tortorella S, Rota D, Conti M, Deplano S, Louka M, Maranini AR, Salat A, Sunda V, Chatgilialoglu C (2017) Fatty acids in membranes as homeostatic, metabolic and nutritional biomarkers: recent advancements in analytics and diagnostics. Diagnostics 7:1. https://doi.org/10.3390/diagnostics7010001

    Article  CAS  Google Scholar 

  • Hottiger MO (2015) Nuclear ADP-Ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263

    Article  CAS  Google Scholar 

  • Kaliman P, Parrizas M (2011) Obesity and systemic inflammation: insights into epigenetic mechanisms. In: Croniger C (ed) Role of the adipocyte in development of type 2 diabetes. InTech, pp 65–88. ISBN: 978-953-307-598-3

    Google Scholar 

  • Kassan M, Choi SK, Galan M, Bishop A, Umezawa K, Trebak M et al (2013) Enhanced NFkappaB activity impairs vascular function through PARP-1, SP-1 and COX2-dependent mechanisms in type 2 diabetes. Diabetes 62(6):2078–2087

    Article  CAS  Google Scholar 

  • Keating ST, El-Osta A (2015) Epigenetics and metabolism. Circ Res 116:715–736

    Article  CAS  Google Scholar 

  • Kiss B, Szántó M, Szklenár M, Brunyánszki A, Marosvölgyi T, Sárosi E et al (2015) Poly(ADP-ribose) polymerase-1 ablation alters eicosanoid and docosanoid signaling and metabolism in a murine model of contact hypersensitivity. Mol Med Rep 11(4):2861–2867

    Article  CAS  Google Scholar 

  • Kristjuhan A, Walker J, Suka N, Grunstein M et al (2002) Transcriptional inhibition of genes with severe histone H3 hypoacetylation in the coding region. Mol Cell 10(4):925–933

    Article  CAS  Google Scholar 

  • Lands WE (1958) Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J Biol Chem 231:883–888

    CAS  PubMed  Google Scholar 

  • Lapucci A, Pittelli M, Rapizzi E, Felici R, Moroni F, Chiarugi A (2011) PARP1 is a nuclear epigenetic regulator of mitochondrial DNA repair and transcription. Mol Pharmacol 79:932–940

    Article  CAS  Google Scholar 

  • Latham T, Mackay L, Sproul D, Karim M, Culley J et al (2012) Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucl Ac Res 40(11):4794–4803

    Article  CAS  Google Scholar 

  • Lazzarini A, Macchiarulo A, Floridi A, Coletti A et al (2015) Very-long-chain fatty acid sphingomyelin in nuclear lipid microdomains of hepatocytes and hepatoma cells: can the exchange from C24:0 to C16:0 affect signal proteins and vitamin D receptor? Mol Biol Cell 26(13):2418–2425

    Article  CAS  Google Scholar 

  • Lichtenberg D, Goñi FM, Heerklotz H (2005) Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci 30(8):430–436

    Article  CAS  Google Scholar 

  • Lopez S, Bermudez B, Montserrat-de la Paz S, Jaramillo S et al (2014) Membrane composition and dynamics: a target of bioactive virgin olive oil constituents. Biochim Biophys Acta Biomembr 1838(6):1638–1656. ISSN 0005-2736

    Article  CAS  Google Scholar 

  • Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432

    Article  Google Scholar 

  • Maraldi NM, Capitani S, Caramelli E, Cocco L et al (1984) Conformational changes of nuclear chromatin related to phospholipid induced modifications of the template availability. Adv Enzym Regul 22:447–464

    Article  CAS  Google Scholar 

  • Mouritsen OG (2005) Life – as a matter of fat. The emerging science of lipidomics. The frontiers collection. Springer, Berlin

    Google Scholar 

  • Ohanna M, Giuliano S, Bonet C, Imbert V et al (2011) Senescent cells develop a PARP-1 and nuclear factor-κB-associated secretome (PNAS). Genes Dev 25(12):1245–1261

    Article  CAS  Google Scholar 

  • Pégorier JP, Le May C, Girard J (2004) Control of gene expression by fatty acids. J Nutr 134:2444S–2449S

    Article  Google Scholar 

  • Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tscho MH (2008) Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A 105(28):9793–9798

    Article  CAS  Google Scholar 

  • Pirrotta V (2003) Transcription. Puffing with PARP. Science 299(5606):528–529

    Article  CAS  Google Scholar 

  • Raghavan V, Vijayaraghavalu S, Peetla C, Yamada M et al (2015) Sustained epigenetic drug delivery depletes cholesterol-sphingomyelin rafts from resistant breast cancer cells, influencing biophysical characteristics of membrane lipids. Langmuir 31(42):11564–11573

    Article  CAS  Google Scholar 

  • Rodríguez-Vargas JM, Ruiz-Magaña MJ, Ruiz-Ruiz C, Majuelos-Melguizo J et al (2012 Jul) ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res 22(7):1181–1198

    Article  Google Scholar 

  • Sadli N, Ahmed N, Ackland ML, Sinclair A et al (2011) Effect of zinc and DHA on expression levels and post-translational modifications of histones H3 and H4 in human neuronal cells. In: Dr Chang RCC (ed) Neurodegenerative diseases – processes, prevention, protection and monitoring. InTech, Rijeka, pp 141–164

    Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  CAS  Google Scholar 

  • Ventura R, Mordec K, Waszczuk J, Wang Z et al (2015) Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming Gene expression. EBio Med 2(8):808–824

    Google Scholar 

  • Virág L, Szabó C (2002) The therapeutic potential of PARP inhibitors. Pharmacol Rev 54:375–429

    Article  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300

    Article  CAS  Google Scholar 

  • Wu X, Dong Z, Wang CJ, Barlow LJ et al (2016) FASN regulates cellular response to genotoxic treatments by increasing PARP-1 expression and DNA repair activity via NF-κB and SP1. Proc Natl Acad Sci U S A 113(45):E6965–EE973

    Article  CAS  Google Scholar 

  • Xu S, Bai P, Little J, Liu P (2014) PARP1 in atherosclerosis: from molecular mechanisms to therapeutic implications. Med Res Rev 34(3):644–675

    Article  CAS  Google Scholar 

  • Zerfaoui M, Errami Y, Naura AS, Suzuki Y et al (2010) PARP1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. J Immunol 185(3):1894–1902

    Article  CAS  Google Scholar 

  • Zhao S, Xu W, Jiang W, Yu W et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004

    Article  CAS  Google Scholar 

  • Zhdanov R, Schirmer EC, Venkatasubramani AV, Kerr ARV et al (2015) Lipids contribute to epigenetic control via chromatin structure and functions. Sci Open Res. https://doi.org/10.14293/S2199-1006.1.SOR-LIFE.AUXYTR.v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Rosaria Faraone-Mennella or Carla Ferreri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Faraone-Mennella, M.R., Masi, A., Ferreri, C. (2019). Regulatory Roles of PARP-1 and Lipids in Epigenetic Mechanisms. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics