Skip to main content

Selenoproteins and Epigenetic Regulation in Mammals

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Selenium is an essential mineral. There is a total of 25 mammalian selenoproteins that confer the majority of physiological and pathophysiological functions of selenium. All functionally characterized selenoproteins are oxidoreductases. In humans, extremely low levels of selenium in the body result in classic selenium deficiency diseases, and patients with mutations in genes involved in selenoprotein expression show selenoprotein deficiency and multisystem defects. Recent progress suggests important roles of certain selenoproteins in epigenetic regulation of promoter methylation, histone modifications, noncoding RNA expressions, and genome stability. Conversely, such epigenetic events can also influence selenoprotein expression. Understanding how selenoproteins function in epigenetic regulations will continue to offer positive impact on selenium regulation toward optimal health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-mC:

5-methylcytosine

DIO:

Iodothyronine deiodinase

DNMT:

DNA methyltransferase

GPX:

Glutathione peroxidase

lincRNA:

Long intergenic noncoding RNA

miRNA:

MicroRNA

ncRNA:

Noncoding RNA

piRNA:

Piwi-interacting RNA

SBP2:

SECIS-binding protein 2

SECIS:

Selenocysteine insertion sequence

SELENO:

Selenoprotein

SEPHS2:

Selenophosphate synthetase-2

SEPSECS:

Selenocysteine synthase

siRNA:

Small interfering RNA

TXNRD:

Thioredoxin reductase

References

  • Agamy O, Zeev BB, Lev D, Marcus B, Fine D, Su D, Narkis G, Ofir R, Hoffmann C, Leshinsky-Silver E (2010) Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet 87:538–544

    Article  CAS  Google Scholar 

  • Anttonen A-K, Hilander T, Linnankivi T, Isohanni P, French RL, Liu Y, Simonović M, Söll D, Somer M, Muth-Pawlak D (2015) Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate. Neurology 85:306–315

    Article  CAS  Google Scholar 

  • Baliga MS, Diwadkar-Navsariwala V, Koh T, Fayad R, Fantuzzi G, Diamond AM (2008) Selenoprotein deficiency enhances radiation-induced micronuclei formation. Mol Nutr Food Res 52:1300–1304

    Article  CAS  Google Scholar 

  • Bansal MP, Oborn CJ, Danielson KG, Medina D (1989) Evidence for two selenium-binding proteins distinct from glutathione peroxidase in mouse liver. Carcinogenesis 10:541–546

    Article  CAS  Google Scholar 

  • Behne D, Hilmert H, Scheid S, Gessner H, Elger W (1988) Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta 966:12–21

    Article  CAS  Google Scholar 

  • Bilsland AE, Revie J, Keith W (2013) MicroRNA and senescence: the senectome, integration and distributed control. Crit Rev Oncog 18:373–390

    Article  Google Scholar 

  • Boguslawska J, Wojcicka A, Piekielko-Witkowska A, Master A, Nauman A (2011) MiR-224 targets the 3′ UTR of type 1 5′-iodothyronine deiodinase possibly contributing to tissue hypothyroidism in renal cancer. PLoS One. https://doi.org/10.1371/journal.pone.0024541

  • Bosl MR, Takaku K, Oshima M, Nishimura S, Taketo MM (1997) Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad Sci U S A 94:5531–5534

    Article  CAS  Google Scholar 

  • Bosse AC, Pallauf J, Hommel B, Sturm M, Fischer S, Wolf NM, Mueller AS (2010) Impact of selenite and selenate on differentially expressed genes in rat liver examined by microarray analysis. Biosci Rep 30:293–306

    Article  CAS  Google Scholar 

  • Budiman ME, Bubenik JL, Miniard AC, Middleton LM, Gerber CA, Cash A, Driscoll DM (2009) Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation. Mol Cell 35:479–489

    Article  CAS  Google Scholar 

  • Burk RF, Christensen JM, Maguire MJ, Austin LM, Whetsell WO, May JM, Hill KE, Ebner FF (2006) A combined deficiency of vitamins E and C causes severe central nervous system damage in guinea pigs. J Nutr 136:1576–1581

    Article  CAS  Google Scholar 

  • Burk RF, Hill KE (2009) Selenoprotein P – expression, functions, and roles in mammals. Biochim Biophys Acta 1790:1441–1447

    Article  CAS  Google Scholar 

  • Burk RF, Hill KE, Motley AK (2001) Plasma selenium in specific and non-specific forms. Biofactors 14:107–114

    Article  CAS  Google Scholar 

  • Campisi J, di Fagagna FDA (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  Google Scholar 

  • Chen L-L (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41:761–772

    Article  CAS  Google Scholar 

  • Cheng W-H, Ho Y-S, Ross DA, Valentine BA, Combs GF, Lei XG (1997) Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J Nutr 127:1445–1450

    Article  CAS  Google Scholar 

  • Cheng W-H, Muftuoglu M, Wu RTY (2014) Selenium and epigenetic effects on histone marks and DNA methylation. In: Ho E, Domann F (eds) Nutrition and epigenetics. CRC Press, New York, pp 273–297

    Chapter  Google Scholar 

  • Collins LJ, Schönfeld B, Chen XS (2011) The epigenetics of non-coding RNA. In: Tollefsbol (ed) Handbook of epigenetics: the new molecular and medical genetics. Academic, Cambridge, pp 49–61

    Chapter  Google Scholar 

  • Combs F Jr (2015) Biomarkers of selenium status. Forum Nutr 7:2209–2236

    CAS  Google Scholar 

  • Combs GF, Watts JC, Jackson MI, Johnson LK, Zeng H, Scheett AJ, Uthus EO, Schomburg L, Hoeg A, Hoefig CS (2011) Determinants of selenium status in healthy adults. Nutr J. https://doi.org/10.1186/1475-2891-10-75

  • Curti V, Capelli E, Boschi F, Nabavi SF, Bongiorno AI, Habtemariam S, Nabavi SM, Daglia M (2014) Modulation of human miR-17–3p expression by methyl 3-O-methyl gallate as explanation of its in vivo protective activities. Mol Nutr Food Res 58:1776–1784

    Article  CAS  Google Scholar 

  • Dai R, Lu R, Ahmed SA (2016) The upregulation of genomic imprinted DLK1-Dio3 miRNAs in murine lupus is associated with global DNA hypomethylation. PLoS One. https://doi.org/10.1371/journal.pone.0153509

  • de Haan JB, Bladier C, Lotfi-Miri M, Taylor J, Hutchinson P, Crack PJ, Hertzog P, Kola I (2004) Fibroblasts derived from Gpx1 knockout mice display senescent-like features and are susceptible to H2O2-mediated cell death. Free Radic Biol Med 36:53–64

    Article  Google Scholar 

  • Dewing AST, Rueli RH, Robles MJ, Nguyen-Wu ED, Zeyda T, Berry MJ, Bellinger FP (2012) Expression and regulation of mouse selenoprotein P transcript variants differing in non-coding RNA. RNA Biol 9:1361–1369

    Article  CAS  Google Scholar 

  • di Fagagna FDA, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  Google Scholar 

  • Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC (2016) The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–446

    Article  CAS  Google Scholar 

  • Du J, Johnson LM, Jacobsen SE, Patel DJ (2015) DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol 16:519–532

    Article  CAS  Google Scholar 

  • Fingerman IM, Zhang X, Ratzat W, Husain N, Cohen RF, Schuler GD (2013) NCBI epigenomics: what’s new for 2013. Nucleic Acids Res 41:D221–D225

    Article  CAS  Google Scholar 

  • Hill KE, Zhou J, Austin LM, Motley AK, Ham A-JL, Olson GE, Atkins JF, Gesteland RF, Burk RF (2007) The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintenance of whole body selenium. J Biol Chem 282:10972–10980

    Article  CAS  Google Scholar 

  • Janssen R, Zuidwijk MJ, Muller A, van Mil A, Dirkx E, Oudejans CBM, Paulus WJ, Simonides WS (2016) MicroRNA 214 is a potential regulator of thyroid hormone levels in the mouse heart following myocardial infarction, by targeting the thyroid-hormone-inactivating enzyme deiodinase type III. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2016.00022

  • Jerome-Morais A, Bera S, Rachidi W, Gann PH, Diamond AM (2013) The effects of selenium and the GPx-1 selenoprotein on the phosphorylation of H2AX. Biochim Biophys Acta 183D:3399–3406

    Article  Google Scholar 

  • Kim Y-C, Gerlitz G, Furusawa T, Catez F, Nussenzweig A, Oh K-S, Kraemer KH, Shiloh Y, Bustin M (2009) Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat Cell Biol 11:92–96

    Article  CAS  Google Scholar 

  • Kim BS, Jung JS, Jang JH, Kang KS, Kang SK (2011) Nuclear Argonaute 2 regulates adipose tissue-derived stem cell survival through direct control of miR10b and selenoprotein N1 expression. Aging Cell 10:277–291

    Article  CAS  Google Scholar 

  • Ku H-Y, Lin H (2014) PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 1:205–218

    Article  CAS  Google Scholar 

  • Kulak MV, Cyr AR, Woodfield GW, Bogachek M, Spanheimer PM, Li T, Price DH, Domann FE, Weigel RJ (2013) Transcriptional regulation of the GPX1 gene by TFAP2C and aberrant CpG methylation in human breast cancer. Oncogene 32:4043–4051

    Article  CAS  Google Scholar 

  • Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777

    Article  CAS  Google Scholar 

  • Lei XG, Zhu J-H, Cheng W-H, Bao Y, Ho Y-S, Reddi AR, Holmgren A, Arnér ESJ (2016) Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev 96:307–364

    Article  CAS  Google Scholar 

  • Lin H-C, Ho S-C, Chen Y-Y, Khoo K-H, Hsu P-H, Yen H-CS (2015) CRL2 aids elimination of truncated selenoproteins produced by failed UGA/sec decoding. Science 349:91–95

    Article  CAS  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447

    Article  CAS  Google Scholar 

  • MacFarlane L-A, R Murphy P. (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561

    Article  CAS  Google Scholar 

  • Maciel-Dominguez A, Swan D, Ford D, Hesketh J (2013) Selenium alters miRNA profile in an intestinal cell line: evidence that miR-185 regulates expression of GPX2 and SEPSH2. Mol Nutr Food Res 57:2195–2205

    Article  CAS  Google Scholar 

  • Min SY, Kim HS, Jung EJ, Jung EJ, Do Jee C, Kim WH (2012) Prognostic significance of glutathione peroxidase 1 (GPX1) down-regulation and correlation with aberrant promoter methylation in human gastric cancer. Anticancer Res 32:3169–3175

    CAS  PubMed  Google Scholar 

  • Miniard AC, Middleton LM, Budiman ME, Gerber CA, Driscoll DM (2010) Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression. Nucleic Acids Res 38:4807–4820

    Article  CAS  Google Scholar 

  • Moustafa ME, Carlson BA, El-Saadani MA, Kryukov GV, Sun Q-A, Harney JW, Hill KE, Combs GF, Feigenbaum L, Mansur DB (2001) Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine-deficient selenocysteine tRNA. Mol Cell Biol 21:3840–3852

    Article  CAS  Google Scholar 

  • Narayan V, Ravindra KC, Liao C, Kaushal N, Carlson BA, Prabhu KS (2015) Epigenetic regulation of inflammatory gene expression in macrophages by selenium. J Nutr Biochem 26:138–145

    Article  CAS  Google Scholar 

  • Olson GE, Winfrey VP, Hill KE, Burk RF (2008) Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem 283:6854–6860

    Article  CAS  Google Scholar 

  • Olson GE, Winfrey VP, NagDas SK, Hill KE, Burk RF (2007) Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 282:12290–12297

    Article  CAS  Google Scholar 

  • Pitts MW, Kremer PM, Hashimoto AC, Torres DJ, Byrns CN, Williams CS, Berry MJ (2015) Competition between the brain and testes under selenium-compromised conditions: insight into sex differences in selenium metabolism and risk of neurodevelopmental disease. J Neurosci 35:15326–15338

    Article  CAS  Google Scholar 

  • Potenza N, Castiello F, Panella M, Colonna G, Ciliberto G, Russo A, Costantini S (2016) Human MiR-544a modulates SELK expression in hepatocarcinoma cell lines. PLoS One. https://doi.org/10.1371/journal.pone.0156908

  • Schoenmakers E, Agostini M, Mitchell C, Schoenmakers N, Papp L, Rajanayagam O, Padidela R, Ceron-Gutierrez L, Doffinger R, Prevosto C (2010) Mutations in the selenocysteine insertion sequence–binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest 120:4220–4235

    Article  CAS  Google Scholar 

  • Schoenmakers E, Carlson B, Agostini M, Moran C, Rajanayagam O, Bochukova E, Tobe R, Peat R, Gevers E, Muntoni F (2016) Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J Clin Invest 126:992–996

    Article  Google Scholar 

  • Schomburg L, Schweizer U, Holtmann B, Flohé L, Sendtner M, Köhrle J (2003) Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J 370:397–402

    Article  CAS  Google Scholar 

  • Seyedali A, Berry MJ (2014) Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. RNA 20:1248–1256

    Article  CAS  Google Scholar 

  • Speckmann B, Grune T (2015) Epigenetic effects of selenium and their implications for health. Epigenetics 10:179–190

    Article  Google Scholar 

  • Squires JE, Davy P, Berry MJ, Allsopp R (2009) Attenuated expression of SECIS binding protein 2 causes loss of telomeric reserve without affecting telomerase. Exp Gerontol 44:619–623

    Article  CAS  Google Scholar 

  • Sunde RA, Raines AM (2011) Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv Nutr 2:138–150

    Article  CAS  Google Scholar 

  • Tian B, Maidana DE, Dib B, Miller JB, Bouzika P, Miller JW, Vavvas DG, Lin H (2016) miR-17-3p exacerbates oxidative damage in human retinal pigment epithelial cells. PLoS One. https://doi.org/10.1371/journal.pone.0160887

  • Torres IO, Fujimori DG (2015) Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol 35:68–75

    Article  CAS  Google Scholar 

  • Vendeland SC, Butler JA, Whanger PD (1992) Intestinal absorption of selenite, selenate, and selenomethionine in the rat. J Nutr Biochem 3:359–365

    Article  CAS  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  Google Scholar 

  • Wang L, Huang H, Fan Y, Kong B, Hu H, Hu K, Guo J, Mei Y, Liu W-L (2014) Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway. Oxidative Med Cell Longev. https://doi.org/10.1155/2014/960362

  • Wang XD, Vatamaniuk MZ, Wang SK, Roneker CA, Simmons RA, Lei XG (2008) Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia 51:1515–1524

    Article  CAS  Google Scholar 

  • Wu RT, Cao L, Chen BPC, Cheng W-H (2014) Selenoprotein H suppresses cellular senescence through genome maintenance and redox regulation. J Biol Chem 289:34378–34388

    Article  CAS  Google Scholar 

  • Wu RT, Cao L, Mattson E, Witwer KW, Cao J, Zeng H, He X, Combs GF, Cheng WH (2017) Opposing impacts on healthspan and longevity by limiting dietary selenium in telomere dysfunctional mice. Aging Cell 16:125–135

    Article  CAS  Google Scholar 

  • Xu Y, Fang F, Zhang J, Josson S, Clair WHS, Clair DKS (2010) miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes. PLoS One. https://doi.org/10.1371/journal.pone.0014356

  • Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, Yuan J, Shan W, Li C, Hu X (2016b) Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol 23:522–530

    Article  CAS  Google Scholar 

  • Zhang X, Zhang L, Zhu JH, Cheng WH (2016a) Nuclear selenoproteins and genome maintenance. IUBMB Life 68:5–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was partially supported by the USDA National Institute of Food and Agriculture (Multistate NE1439, accession no. 1008124, project no. MIS-384050), the Scientific and Technological Research Council of Turkey (TUBITAK, grant no. 114Z875), Zhejiang Provincial Natural Science Foundation Distinguished Young Scholar Program (LR13H020002), and Wenzhou Science and Technology Bureau (Y20150005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hsing Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lu, HY., Somuncu, B., Zhu, J., Muftuoglu, M., Cheng, WH. (2019). Selenoproteins and Epigenetic Regulation in Mammals. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics