Skip to main content

Epigenetic Alterations in Human Sperm

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

The concept called developmental origins of health and disease (DOHaD) pays attention to the environmental influence on the fetus in utero (maternal side). However, individual mammals originate from the oocyte and sperm. Sperm are more susceptible to genetic and epigenetic mutations than oocytes because of the multistep germ cell meiosis during spermatogenesis (paternal side). DNA methylation might be influenced by external environmental factors such as endocrine disruptors, certain foods, and drug exposures during gametogenesis. In aged men these factors accumulate and affect the quality of sperm. Recent work identified sperm from men of advanced aged as a risk factor for autism, depression, epilepsy, and some kinds of cancer in children. In this chapter, we introduce the concept that methylation errors of paternal sperm may lead to congenital disease and various diseases later in life, and we would like to suggest the “expanded DOHaD hypothesis.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ART:

Assisted reproductive technology

AS:

Angelman syndrome

BWS:

Beckwith–Wiedemann syndrome

CGIs:

CpG islands

DOHaD:

Developmental origins of health and disease

gDMR:

Germline differentially methylated region

ICR:

Imprinting control region

ICSI:

Intracytoplasmic sperm injection

IVF:

In vitro fertilization

mgDMR:

Maternally methylated gDMR

PIH:

Pregnancy-induced hypertension

PCR:

Polymerase chain reaction

pgDMR:

Paternally methylated gDMR

PWS:

Prader–Willi syndrome

SRS:

Silver–Russell syndrome

TET:

Ten-eleven translocation

References

  • Al-Mujadi H, Ar AR, Katzarov MG et al (2006) Preemptive gabapentin reduces postoperative pain and opioid demand following thyroid surgery. Can J Anaesth 53:268–273

    Article  Google Scholar 

  • Amouroux R, Nashun B, Shirane K et al (2016) De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat Cell Biol 18:225–233

    Article  CAS  Google Scholar 

  • Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077–1081

    Article  CAS  Google Scholar 

  • Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 6:1–20

    Google Scholar 

  • Bliek J, Terhal P, Van Den Bogaard MJ et al (2006) Hypomethylation of the H19 gene causes not only Silver-Russell syndrome (SRS) but also isolated asymmetry or an SRS-like phenotype. Am J Hum Genet 78:604–614

    Article  CAS  Google Scholar 

  • Cleaton MA, Edwards CA, Ferguson-Smith AC (2014) Phenotypic outcomes of imprinted gene models in mice: elucidation of pre- and postnatal functions of imprinted genes. Annu Rev Genomics Hum Genet 15:93–126

    Article  CAS  Google Scholar 

  • Court F, Tayama C, Romanelli V et al (2014) Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 24:554–569

    Article  CAS  Google Scholar 

  • Guo F, Li X, Liang D et al (2014a) Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15:447–458

    Article  CAS  Google Scholar 

  • Guo H, Zhu P, Yan L et al (2014b) The DNA methylation landscape of human early embryos. Nature 511:606–610

    Article  CAS  Google Scholar 

  • Hamada H, Okae H, Toh H et al (2016) Allele-specific methylome and transcriptome analysis reveals widespread imprinting in the human placenta. Am J Hum Genet 99:1045–1058

    Article  CAS  Google Scholar 

  • Hanna CW, Penaherrera MS, Saadeh H et al (2016) Pervasive polymorphic imprinted methylation in the human placenta. Genome Res 26:756–767

    Article  CAS  Google Scholar 

  • Hiura H, Okae H, Miyauchi N et al (2012) Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum Reprod 27:2541–2548

    Article  CAS  Google Scholar 

  • Houshdaran S, Cortessis VK, Siegmund K et al (2007) Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One 2:e1289

    Article  Google Scholar 

  • Hultman CM, Sandin S, Levine SZ et al (2011) Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry 16:1203–1212

    Article  CAS  Google Scholar 

  • Jenkins TG, Aston KI, Pflueger C et al (2014) Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet 10:e1004458

    Article  Google Scholar 

  • Katari S, Turan N, Bibikova M et al (2009) DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet 18:3769–3778

    Article  CAS  Google Scholar 

  • Kobayashi H, Sato A, Otsu E et al (2007) Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16:2542–2551

    Article  CAS  Google Scholar 

  • Kondrashov A (2012) Genetics: the rate of human mutation. Nature 488:467–468

    Article  CAS  Google Scholar 

  • Kong A, Frigge ML, Masson G et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475

    Article  CAS  Google Scholar 

  • Lee HY, Jung SE, Oh YN et al (2015) Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study. Forensic Sci Int Genet 19:28–34

    Article  CAS  Google Scholar 

  • Maher ER (2005) Imprinting and assisted reproductive technology. Hum Mol Genet 14(1):R133–R138

    Article  CAS  Google Scholar 

  • Melamed N, Choufani S, Wilkins-Haug LE et al (2015) Comparison of genome-wide and gene-specific DNA methylation between ART and naturally conceived pregnancies. Epigenetics 10:474–483

    Article  Google Scholar 

  • Molaro A, Hodges E, Fang F et al (2011) Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell 146:1029–1041

    Article  CAS  Google Scholar 

  • Morgan HD, Santos F, Green K et al (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(1):R47–R58

    Article  CAS  Google Scholar 

  • O’roak BJ, Vives L, Girirajan S et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:246–250

    Article  Google Scholar 

  • Okae H, Arima T (2016) DNA methylation dynamics during early human development. J Mamm Ova Res 33:101–107

    Article  Google Scholar 

  • Okae H, Chiba H, Hiura H et al (2014) Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet 10:e1004868

    Article  Google Scholar 

  • Pacheco SE, Houseman EA, Christensen BC et al (2011) Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. PLoS One 6:e20280

    Article  CAS  Google Scholar 

  • Polvi A, Linnankivi T, Kivela T et al (2012) Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. Am J Hum Genet 90:540–549

    Article  CAS  Google Scholar 

  • Richardson ME, Bleiziffer A, Tuttelmann F et al (2014) Epigenetic regulation of the RHOX homeobox gene cluster and its association with human male infertility. Hum Mol Genet 23:12–23

    Article  CAS  Google Scholar 

  • Sanchez-Delgado M, Martin-Trujillo A, Tayama C et al (2015) Absence of maternal methylation in Biparental Hydatidiform moles from women with NLRP7 maternal-effect mutations reveals widespread placenta-specific imprinting. PLoS Genet 11:e1005644

    Article  Google Scholar 

  • Smith ZD, Chan MM, Humm KC et al (2014) DNA methylation dynamics of the human preimplantation embryo. Nature 511:611–615

    Article  CAS  Google Scholar 

  • Sun JX, Helgason A, Masson G et al (2012) A direct characterization of human mutation based on microsatellites. Nat Genet 44:1161–1165

    Article  CAS  Google Scholar 

  • Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line. Cell 93:309–312

    Article  CAS  Google Scholar 

  • Tilghman SM (1999) The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96:185–193

    Article  CAS  Google Scholar 

  • Weintraub K (2011) The prevalence puzzle: autism counts. Nature 479:22–24

    Article  CAS  Google Scholar 

  • Xie D, Chen CC, Ptaszek LM et al (2010) Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res 20:804–815

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Arima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Miyauchi, N. et al. (2019). Epigenetic Alterations in Human Sperm. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics