Skip to main content

Nutrition, DNA Methylation, and Developmental Origins of Cardiometabolic Disease: A Signal Systems Approach

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 361 Accesses

Abstract

The developmental origins of health and disease (DOHaD) hypothesis posits that environmental exposures during vulnerable developmental stages have a lasting impact on adult phenotype. Early life nutrition is recognized as a key determinant of long-term health, and epigenetic mechanisms have surfaced as a potential biological mechanism. This review first provides an overview of literature regarding epigenetically mediated DOHaD phenomena within the realm of cardiometabolic disease. Next, parallels are drawn between a signal system and epigenetic programming in DOHaD; specifically, with DNA methylation acting as a signal within an individual spanning from early to later life. Finally, epigenetically mediated DOHaD phenomena are explored using life course epidemiology and a signal system framework to identify potential sources of error, and make suggestions for appropriate study designs and analytical strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BPA:

Bisphenol A

CpG:

Cytosine-phosphate-guanine

DAG:

Directed acyclic graph

DNMT:

DNA methyltransferase

DOHaD:

Developmental origins of health and disease

EBLUP:

Empirical Best Linear Unbiased Predictor

References

  • Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077–1081

    Article  CAS  Google Scholar 

  • Barker DJ, Winter PD, Osmond C et al (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580

    Article  CAS  Google Scholar 

  • Barlow D, Bartolomei M (2007) Genomic imprinting in mammals. In: Allis D, Jenuwein T, Reinberg D, Caparros M-L (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Cooper WN, Khulan B, Owens S et al (2012) DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J 26:1782–1790

    Article  CAS  Google Scholar 

  • Dick KJ, Nelson CP, Tsaprouni L et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998

    Article  CAS  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104: 13056–13061

    Article  CAS  Google Scholar 

  • Dominguez-Salas P, Moore SE, Baker MS et al (2014) Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 5:3746

    Article  CAS  Google Scholar 

  • El Hajj N, Pliushch G, Schneider E et al (2013) Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes 62:1320–1328

    Article  Google Scholar 

  • Faulk C, Liu K, Barks A et al (2014) Longitudinal epigenetic drift in mice perinatally exposed to lead. Epigenetics 9:934–941

    Article  Google Scholar 

  • Fraser A, Tilling K, Macdonald-Wallis C et al (2010) Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation 121:2557–2564

    Article  Google Scholar 

  • Getty T (2014) GEIs when information transfer is uncertain or incomplete. In: Hosken HA (ed) Genotype-by-environment interactions and sexual selection. Wiley Blackwell, Chichester

    Google Scholar 

  • Godfrey KM, Sheppard A, Gluckman PD et al (2011) Epigenetic gene promoter methylation at birth is associated with Child’s later adiposity. Diabetes 60:1528

    Article  CAS  Google Scholar 

  • Haertle L, El Hajj N, Dittrich M et al (2017) Epigenetic signatures of gestational diabetes mellitus on cord blood methylation. Clin Epigenetics 9:28

    Article  Google Scholar 

  • Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    Article  CAS  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    Article  CAS  Google Scholar 

  • Kochmanski J, Marchlewicz EH, Savidge M et al (2017a) Longitudinal effects of developmental bisphenol a and variable diet exposures on epigenetic drift in mice. Reprod Toxicol 68:154–163

    Article  CAS  Google Scholar 

  • Kochmanski J, Montrose L, Goodrich JM et al (2017b) Environmental deflection: the impact of toxicant exposures on the aging epigenome. Toxicol Sci 156:325–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuh D, Ben-Shlomo Y, Lynch J et al (2003) Life course epidemiology. J Epidemiol Community Health 57:778–783

    Article  CAS  Google Scholar 

  • Lee HS, Barraza-Villarreal A, Hernandez-Vargas H et al (2013) Modulation of DNA methylation states and infant immune system by dietary supplementation with omega-3 PUFA during pregnancy in an intervention study. Am J Clin Nutr 98:480–487

    Article  CAS  Google Scholar 

  • Lillycrop K, Murray R, Cheong C et al (2017) ANRIL promoter DNA methylation: a perinatal marker for later adiposity. EBioMedicine 19:60–72

    Article  Google Scholar 

  • Liu X, Chen Q, Tsai H-J et al (2014) Maternal preconception body mass index and offspring cord blood DNA methylation: exploration of early life origins of disease. Environ Mol Mutagen 55:223–230

    Article  CAS  Google Scholar 

  • Moore TR (2010) Fetal exposure to gestational diabetes contributes to subsequent adult metabolic syndrome. Am J Obstet Gynecol 202:643–649

    Article  Google Scholar 

  • Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 20:345–352

    Article  CAS  Google Scholar 

  • Perng W, Gillman MW, Mantzoros CS et al (2014) A prospective study of maternal prenatal weight and offspring cardiometabolic health in midchildhood. Ann Epidemiol 24:793–800.e791

    Article  Google Scholar 

  • Pfeiffer S, Kruger J, Maierhofer A et al (2016) Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction. Sci Rep 6:27969

    Article  CAS  Google Scholar 

  • Regnault N, Gillman MW, Rifas-Shiman SL et al (2013) Sex-specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care 36:3045–3053

    Article  CAS  Google Scholar 

  • Roseboom T, Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485

    Article  Google Scholar 

  • Shah S, McRae AF, Marioni RE et al (2014) Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Res 24:1725–1733

    Article  CAS  Google Scholar 

  • Shannon CEA (1948) Mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Sharp GC, Lawlor DA, Richmond RC et al (2015) Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon longitudinal study of parents and children. Int J Epidemiol 44:1288–1304

    Article  Google Scholar 

  • Silverman BL, Metzger BE, Cho NH et al (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 18:611

    Article  CAS  Google Scholar 

  • Simmons RA, Templeton LJ, Gertz SJ (2001) Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50:2279–2286

    Article  CAS  Google Scholar 

  • Soubry A, Murphy SK, Wang F et al (2015) Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes 39:650–657

    Article  CAS  Google Scholar 

  • Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053

    Article  CAS  Google Scholar 

  • Tobi EW, Goeman JJ, Monajemi R et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592

    Article  CAS  Google Scholar 

  • VanderWeele TJ, Tchetgen Tchetgen EJ (2017) Mediation analysis with time varying exposures and mediators. J R Stat Soc Ser B Stat Methodol 79:917–938

    Article  Google Scholar 

  • Wahl S, Drong A, Lehne B et al (2017) Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541:81–86

    Article  CAS  Google Scholar 

  • Waterland RA, Kellermayer R, Laritsky E et al (2010) Season of conception in rural Gambia affects DNA methylation at putative human metastable Epialleles. PLoS Genet 6:e1001252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Perng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Laubach, Z.M., Faulk, C.D., Cardenas, A., Perng, W. (2019). Nutrition, DNA Methylation, and Developmental Origins of Cardiometabolic Disease: A Signal Systems Approach. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_107

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_107

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics