Skip to main content

Wine Polyphenols and Health

  • Living reference work entry
  • First Online:
Bioactive Molecules in Food

Abstract

The various polyphenol families present in wine are important for a number of technological properties of wine such as clarity, hue, and palatal taste. Dietary polyphenols are associated with a wide range of health benefits, protecting against chronic diseases and promoting healthy aging. However, basic and clinical science is showing that the reality is much more complex than this and that several issues, notably daily intake, bioavailability, or in vivo antioxidant activity, are yet to be resolved. The concentration of phenolic compounds in wine is determined by viticulture and vinification practices, peculiar of different countries. Interesting are the effects of different yeast strains on the final concentration of polyphenols in red wine. We here summarize the recent findings concerning the effects of specific classes of polyphenol (soluble acids, flavonols, and stilbenes) on human health and propose future directions for research to increase the amount of these healthy compounds in wine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yung JY, Saliba AJ, Prenzler PD (2010) Should red wine be considered a functional food? Compr Rev Food Sci Food Saf 9:530–551

    Article  CAS  Google Scholar 

  2. Goldberg DM, Tsang E, Karumanchiri A, Diamandis EP, Soleas G, Ng E (1996) Method to assay the concentrations of phenolic constituents of biological interest in wines. Anal Chem 68:1688–1694

    Article  CAS  PubMed  Google Scholar 

  3. Giovinazzo G, Grieco F (2015) Functional properties of grape and wine polyphenols. Plant Foods Hum Nutr 70:454–462

    Article  CAS  PubMed  Google Scholar 

  4. Chong MF, Macdonald R, Lovegrove JA (2010) Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr 104(S3):S28–S39

    Article  CAS  PubMed  Google Scholar 

  5. Jandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the vitaceae, biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    Article  CAS  Google Scholar 

  6. Pinasseau L, Vallverdú-Queralt A, Verbaere A, Roques M, Meudec E, Le Cunff L, Péros J-P, Ageorges A, Sommerer N, Boulet J-C, Terrier N, Cheynier V (2017) Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front Plant Sci 8:1826

    Article  PubMed  PubMed Central  Google Scholar 

  7. Paixao N, Pereira V, Marques JC, Camara JS (2008) Quantification of polyphenols with potential antioxidant properties in wines using reverse phase HPLC. J Sep Sci 31:2189–2198

    Article  CAS  PubMed  Google Scholar 

  8. Soleas GJ, Diamandis EP, Goldberg DM (2001) The world of resveratrol. In: American Institute for Cancer Research (eds) Nutrition and Cancer Prevention. Advances in Experimental Medicine and Biology, vol 492. Springer, Boston, MA, pp 159–182

    Chapter  Google Scholar 

  9. Arnous A, Makris DP, Kefalas P (2001) Effect of principal polyphenolic components in relation to antioxidant characteristics of aged red wines. J Agric Food Chem 49:5736–5742

    Article  CAS  PubMed  Google Scholar 

  10. Mattivi F, Zulian C, Nicolini G, Valenti L (2002) Wine, biodiversity, technology, and antioxidants. Ann N Y Acad Sci 957:37–56

    Article  CAS  PubMed  Google Scholar 

  11. Saucier C, Little D, Glories Y (1997) First evidence of acetaldehyde-flavanol condensation products in red wine. Am J Enol Vitic 48:370–373

    CAS  Google Scholar 

  12. Sánchez-Iglesias M, González-Sanjosé ML, Pérez-Magariño S, Ortega-Heras M, González-Huerta C (2009) Effect of micro-oxygenation and wood type on the phenolic composition and colour of an aged red wine. J Agric Food Chem 57:11498–11509

    Article  PubMed  CAS  Google Scholar 

  13. Berta Baca-Bocanegra J, Nogales-Bueno J, Hernández-Hierro M, Heredia FJ (2018) Evaluation of extractable polyphenols released to wine from cooperage byproduct by near infrared hyperspectral imaging. Food Chem 20:206–212

    Article  CAS  Google Scholar 

  14. Spranger MI, Climaco MC, Sun BS, Eiriz N, Fortunato C, Nunes A, Leandro MC, Avelar ML, Belchior AP (2004) Differentiation of red winemaking technologies by phenolic and volatile composition. Anal Chim Acta 513:151–161

    Article  CAS  Google Scholar 

  15. Restuccia D, Sicari V, Pellicanò TM, Spizzirri UG, Loizzo MR (2017) The impact of cultivar on polyphenol and biogenic amine profiles in Calabrian red grapes during winemaking. Food Res Int 102:303–312

    Article  CAS  PubMed  Google Scholar 

  16. Cabrita MJ, Torres M, Palma V, Alves E, Patão R, Costa Feritas AM (2008) Impact of malolactic fermentation on low molecular weight phenolic compounds. Talanta 74:1281–1286

    Article  CAS  PubMed  Google Scholar 

  17. Gil-Muñoz R, Gómez-Plaza E, Martínez A, López-Roca JM (1999) Evolution of phenolic compounds during wine fermentation and post-fermentation: influence of grape temperature. J Food Compos Anal 12:259–272

    Article  CAS  Google Scholar 

  18. Teixeira J, Gaspar A, Garrido EM, Garrido J, Borges F (2013) Hydroxycinnamic acid antioxidants: an electrochemical overview. Bio Med Res Int 2013:Article ID 251754. 11 pages

    Google Scholar 

  19. Sul D, Kim HS, Lee D, Joo SS, Hwang KW, Park SY (2009) Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci 84:257–262

    Article  CAS  PubMed  Google Scholar 

  20. Vauzour D, Houseman EJ, George TW, Corona G, Garnotel R, Jackson KG, Sellier C, Gillery P, Kennedy OB, Lovegrove JA, Spencer JP (2010) Moderate champagne consumption promotes an acute improvement in acute endothelial-independent vascular function in healthy human volunteers. Br J Nutr 103:1168–1178

    CAS  PubMed  Google Scholar 

  21. Jung EH, Ran Kim S, Hwang IK, Youl HT (2007) Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agric Food Chem 55:9800–9804

    Article  CAS  PubMed  Google Scholar 

  22. Vina J, Gomez-Cabrera MC, Borras C (2007) Fostering antioxidant defences, up-regulation of antioxidant genes or antioxidant supplementation. Br J Nutr 98:S36–S40

    Article  CAS  PubMed  Google Scholar 

  23. Mink PJ, Scrafford CG, Barraj LM (2007) Flavonoid intake and cardiovascular disease mortality, a prospective study in post-menopausal women. Am J Clin Nutr 85:895–909

    Article  CAS  PubMed  Google Scholar 

  24. Seeram NP, Adams LS, Hardy ML, Heber D (2004) Total cranberry extract versus its phytochemical constituents, anti-proliferative and synergistic effects against human tumour cell lines. J Agric Food Chem 52:2512–2517

    Article  CAS  PubMed  Google Scholar 

  25. Soobratte MA, Bahorun T, Aruoma OI (2006) Chemopreventive actions of polyphenolic compounds in cancer. Biofactors 27:19–35

    Article  Google Scholar 

  26. Fink BN, Steck SE, Wolff MS, Britton JA, Kabat GC, Schroeder JC, Teitelbaum SL, Neugut AI, Gammon MD (2007) Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol 165:514–523

    Article  PubMed  Google Scholar 

  27. Zhu L, Zhang Y, Lu J (2012) Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int J Mol Sci 13:3492–3510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dvorakova M, Landa P (2017) Anti-inflammatory activity of natural stilbenoids: a review. Pharm Res 124:126–145

    Article  CAS  Google Scholar 

  29. Piotrowska H, Kucinska M, Murias M (2012) Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 750:60–82

    Article  CAS  PubMed  Google Scholar 

  30. Neves AR, Lúcio M, Lima JLC, Reis S (2012) Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics drug-delivery, and membrane interactions. Curr Med Chem 19:1663–1681

    Article  CAS  PubMed  Google Scholar 

  31. Poulose SM, Thangthaeng N, Miller MG, Shukitt-Hale B (2015) Effects of pterostilbene and resveratrol on brain and behaviour. Neurochem Int 89:227–233

    Article  CAS  PubMed  Google Scholar 

  32. Rivière C, Pawlus AD, Mérillon JM (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29:1317–1333

    Article  PubMed  CAS  Google Scholar 

  33. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  34. Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventos RM, Berenguer T, Jakszyn P, Martinez C, Sanchez M, Navarro C, Chirlaque M, Tormo M-J, Quiros J, Amiano P, Dorronsoro M, Larranaga N, Barricarte A, Ardanaz E, Gonzalez C (2008) Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a Spanish population, European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Br J Nutr 100:188–196

    Article  CAS  PubMed  Google Scholar 

  35. Gerard E, Mullin MD (2011) Red wine, grapes, and better health-resveratrol. Nutr Clin Pract 26:722–723

    Article  Google Scholar 

  36. D’Introno A, Paradiso A, Scoditti E, D’Amico L, De Paolis A, Carluccio MA, Nicoletti I, DeGara L, Santino A, Giovinazzo G (2009) Anti-oxidant and anti-inflammatory properties of tomato fruit synthesising different amount of stilbenes. Plant Biotechnol J 7:422–429

    Article  PubMed  CAS  Google Scholar 

  37. Frei B (2004) Efficacy of dietary antioxidants to prevent oxidative damage and inhibit chronic disease. J Nutr 134:3196–3198

    Article  Google Scholar 

  38. Kundu JK, Surth YJ (2008) Cancer chemopreventive and therapeutic potential of resveratrol, mechanistic perspectives. Cancer Lett 269:243–261

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen A, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C, Holcombe RF (2009) Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res 1:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fonar Y, Frank D (2011) FAK and WNT signaling: the meeting of two pathways in cancer and development. Anti Cancer Agents Med Chem 11:600–606

    Article  CAS  Google Scholar 

  41. Kaminski BM, Steinhilber D, Stein JM, Ulrich S (2011) Phytochemicals resveratrol and sulforaphane as potential agents for enhancing the anti-tumor activities of conventional cancer therapies. Curr Pharm Biotechnol 67:1167–1178

    CAS  Google Scholar 

  42. Vergara D, Simeone P, Toraldo D, Del Boccio P, Vergaro V, Leporatti S, Pieragostino D, Tinelli A, De Domenico S, Alberti S, Urbani A, Salzet M, Santino A, Maffia M (2012) Resveratrol down regulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Mol Biosyst 8:1078–1087

    Article  CAS  PubMed  Google Scholar 

  43. Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ (2008) Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr Rev 66:445–454

    Article  PubMed  Google Scholar 

  44. Bruno R, Ghisolfi L, Priulla M, Nicolin A, Bertelli A (2003) Wine and tumours: study of resveratrol. Drugs Exp Clin Res 29:257–261

    CAS  PubMed  Google Scholar 

  45. Jazirehi AR, Bonavida B (2004) Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin’s lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis. Mol Cancer Ther 3:71–84

    Article  CAS  PubMed  Google Scholar 

  46. Dulak J (2005) Nutraceuticals as anti-angiogenic agents: hopes and reality. J Physiol Pharmacol 56:51–67

    PubMed  Google Scholar 

  47. Jones SB, DePrimo SE, Whitfield ML, Brooks JD (2005) Resveratrol induced gene expression profiles in human prostate cancer cells. Cancer Epidemiol Biomark Prev 14:596–604

    Article  CAS  Google Scholar 

  48. Sharma S, Chopra K, Kulkarni SK (2007) Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain, participation of nitric oxide F TNF-alpha. Phytother Res 21:278–283

    Article  CAS  PubMed  Google Scholar 

  49. Anekonda TS (2006) Resveratrol a boon for treating Alzheimer’s disease? Brain Res Rev 52:316–326

    Article  CAS  PubMed  Google Scholar 

  50. Wodd JG, Rogina B, Lavu S, Howitz K, Hefland SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  CAS  Google Scholar 

  51. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 14:421–433

    Article  CAS  Google Scholar 

  52. Pearson KJ1, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carluccio MA, Ancora MA, Massaro M, Carluccio M, Scoditti E, Distante A, Storelli C, De Caterina R (2007) Homocysteine induces VCAM-1 gene expression through NF-kappa B and NAD(P)H oxidase activation, protective role of Mediterranean diet polyphenolic antioxidants. Am J Physiol Heart Circ Physiol 293:2344–2354

    Article  CAS  Google Scholar 

  54. Csiszar A, Smith K, Labinskyy N, Orosz Z, Rivera A, Ungvari Z (2006) Resveratrol attenuates TNF-α-induced activation of coronary arterial endothelial cells: role of NF-κB inhibition. Am J Physiol-Heart Circ Physiol 291:H1694–H1699

    Article  CAS  PubMed  Google Scholar 

  55. Pietrocola F, Mariño G, Lissa D, Vacchell IE, Malik SA, Niso-Santano M, Zamzami N, Galluzzi L, Maiuri MC, Kroemer G (2012) Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle 11:3851–3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Amri A, Chaumeil JC, Sfar S, Charrueau C (2012) Administration of resveratrol, what formulation solutions to bioavailability limitations ? J Control Rel 158:182–193

    Article  CAS  Google Scholar 

  57. González-Neves G, Gil G, Favre G, Baldi C, Hernández N, Traverso S (2013) Influence of winemaking procedure and grape variety on the color and composition of young red wines. S Afr J Enol Vitic 34:138–146

    Google Scholar 

  58. Gambacorta G, Antonacci D, Pati S, la Gatta M, Faccia M, Coletta A, La Notte E (2011) Influence of winemaking technologies on phenolic composition of Italian red wines. Eur Food Res Technol 233:1057–1066

    Article  CAS  Google Scholar 

  59. El Darra N, Turk MF, Ducasse MA, Grimi N, Maroun RG, Louka N, Vorobiev E (2016) Changes in polyphenol profiles and color composition of freshly fermented model wine due to pulsed electric field, enzymes and thermos vinification pretreatments. Food Chem 194:944–950

    Article  PubMed  CAS  Google Scholar 

  60. Atanacković M, Petrović A, Jović S, Gojković-Bukarica L, Bursać M, Cvejić J (2012) Influence of winemaking techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines. Food Chem 131:513–518

    Article  CAS  Google Scholar 

  61. Gambuti A, Strollo D, Erbaggio A, Lecce L, Moio L (2007) Effect of winemaking practices on color indexes and selected bioactive phenolics of Aglianico wine. J Food Sci 72:S623–S628

    Article  CAS  PubMed  Google Scholar 

  62. Kostadinović S, Wilkens A, Stefova M, Ivanova V, Vojnoski B, Mirhosseini H, Winterhalter P (2012) Stilbene levels and antioxidant activity of Vranec and Merlot wines from Macedonia: effect of variety and enological practices. Food Chem 135:3003–3009

    Article  PubMed  CAS  Google Scholar 

  63. Ivanova V, Vojnoski B, Stefova M (2012) Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. J Food Sci Technol 492:161–172

    Article  CAS  Google Scholar 

  64. Coletta A, Trani A, Faccia M, Punzi R, Dipalmo T, Crupi P, Antonacci D, Gambacorta G (2013) Influence of viticultural practices and winemaking technologies on phenolic composition and sensory characteristics of Negroamaro red wines. Int J Food Sci Technol 4811: 2215–2227

    Google Scholar 

  65. Ferraretto P, Celotti E (2016) Preliminary study of the effects of ultrasound on red wine polyphenols. CyTA-J Food 14:529–535

    CAS  Google Scholar 

  66. Baiano A, Terracone C, Gambacorta G, La Notte E (2009) Phenolic content and antioxidant activity of Primitivo wine: comparison among winemaking technologies. J Food Sci 74: 258–267

    Article  CAS  Google Scholar 

  67. Francesca N, Romano R, Sannino C, Le Grottaglie L, Settanni L, Moschetti G (2014) Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration. Int J Food Microbiol 17:84–93

    Article  CAS  Google Scholar 

  68. Mulero J, Zafrilla P, Cayuela JM, Martínez-Cachá A, Pardo F (2011) Antioxidant activity and phenolic compounds in organic red wine using different winemaking techniques. J Food Sci 76:C436–C440

    Article  CAS  PubMed  Google Scholar 

  69. Cholet CL, Delsart C, Petrel M, Gontier E, Grimi N, L’Hyvernay A, Ghidossi R, Vorobiev E, Mietton-Peuchot M, Geny L (2014) Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides. J Agric Food Chem 62:2925–2934

    Article  CAS  PubMed  Google Scholar 

  70. Delsart C, Ghidossi R, Poupot C, Cholet C, Grimi N, Vorobiev E, Milisic V, Peuchot MM (2012) Enhanced extraction of phenolic compounds from merlot grapes by pulsed electric field treatment. Am J Enol Vitic 63:205–211

    Article  CAS  Google Scholar 

  71. Puértolas E, Saldaña G, Alvarez I, Raso J (2010) Effect of pulsed electric field processing of red grapes on wine chromatic and phenolic characteristics during aging in oak barrels. J Agric Food Chem 58:2351–2357

    Article  PubMed  CAS  Google Scholar 

  72. Luengo E, Alvarez I, Raso J (2015) Phenolic extraction: pulsed electric fields: a technology for improving phenolic extraction in red wines. Wine Vitic J 301:17–21

    Google Scholar 

  73. Bai B, He F, Yang L, Chen F, Reeves MJ, Li J (2013) Comparative study of phenolic compounds in Cabernet Sauvignon wines made in traditional and Ganimede fermenters. Food Chem 1414:3984–3992

    Article  CAS  Google Scholar 

  74. Morata A, Gomez-Cordoves C, Subervolia J, Bartolome B, Colomo B, Suarez JA (2003) Adsorption of anthocyanins by yeast cell walls during fermentation of red wines. J Agric Food Chem 51:4084–4088

    Article  CAS  PubMed  Google Scholar 

  75. Rodriguez-Nogales JM, Fernández-Fernández E, Gómez M, Vila-Crespo J (2012) Antioxidant properties of sparkling wines produced with β-glucanases and commercial yeast preparations. J Food Sci 77:1005–1010

    Article  CAS  Google Scholar 

  76. Mazauric JP, Salmon JM (2005) Interactions between yeast lees and wine polyphenols during simulation of wine aging: I analysis of remnant polyphenolic compounds in the resulting wines. J Agric Food Chem 53:5647–5653

    Article  CAS  PubMed  Google Scholar 

  77. Girard B, Yuksel D, Cliff MA, Delaquis P, Reynolds AG (2001) Vinification effects on the sensory, colour, and GC profiles of Pinot noir wines from British Colombia. Food Res Int 34:483–499

    Article  CAS  Google Scholar 

  78. Mazza G, Fukumoto L, Delaquis P, Girard B, Ewert B (1999) Anthocyanins, phenolics, and color of Cabernet franc, Merlot, and Pinot noir wines from British Colombia. J Agric Food Chem 47:4009–4017

    Article  CAS  PubMed  Google Scholar 

  79. Brandolini V, Fiore C, Maietti A, Tedeschi P, Romano P (2007) Influence of Saccharomyces cerevisiae strains on wine total antioxidant capacity evaluated by photo-chemiluminescence. World J Microbiol Biotechnol 23:581–586

    Article  CAS  Google Scholar 

  80. Carew AL, Smith P, Close DC, Curtin C, Dambergs RG (2013) Yeast effects on Pinot noir wine phenolics, color, and tannin composition. J Agric Food Chem 6141:9892–9898

    Article  CAS  Google Scholar 

  81. Carrascosa AV, Bartolome B, Robredo S, Leon A, Cebollero E, Juega M, Nunez YP, Martinez MC, Martinez-Rodriguez AJ (2012) Influence of locally-selected yeast on the chemical and sensorial properties of Albariño white wines. LWT-Food Sci Technol 46: 319–325

    Article  CAS  Google Scholar 

  82. Tufariello M, Chiriatti MA, Grieco F, Perrotta C, Capone S, Rampino P, Tristezza M, Mita G, Grieco F (2014) Influence of autochthonous Saccharomyces cerevisiae strains on volatile profile of Negroamaro wines. LWT Food Sci Technol 58:35–48

    Article  CAS  Google Scholar 

  83. Caridi A, De Bruno A, De Salvo E, Piscopo A, Poiana M, Sidari R (2017) Selected yeasts to enhance phenolic content and quality in red wine from low-pigmented grapes. Eur Food Res Technol 2433:367–378

    Article  CAS  Google Scholar 

  84. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  CAS  PubMed  Google Scholar 

  85. Calabriso N, Scoditti E, Massaro M, Pellegrino M, Storelli C, Ingrosso I, Giovinazzo G, Carluccio MA (2016) Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression. Eur J Nutr 55:477–489

    Article  CAS  PubMed  Google Scholar 

  86. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecule: NF-kB and cytokine-inducible enhancer. FASEB J 9:899–909

    Article  CAS  PubMed  Google Scholar 

  87. Scoditti E, Calabriso N, Massaro M, Pellegrino M, Storelli C, Martines G, De Caterina R, Carluccio MA (2012) Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys 527:81–89

    Article  CAS  PubMed  Google Scholar 

  88. Tribolo S, Lodi F, Connor C, Suri S, Wilson VG, Taylor MA, Needs PW, Kroon PA, Hughes DA (2008) Comparative effects of quercetin and its predominant human metabolites on adhesion molecule expression in activated human vascular endothelial cells. Atherosclerosis 197:50–56

    Article  CAS  PubMed  Google Scholar 

  89. Shimoi K, Saka N, Nozawa R, Sato M, Amano I, Nakayama T, Kinae N (2001) Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metab Dispos 29:1521–1524

    CAS  PubMed  Google Scholar 

  90. Lodi F, Winterbone MS, Tribolo S, Needs PW, Hughes DA, Kroon PA (2012) Human quercetin conjugated metabolites attenuate TNF-alpha-induced changes in Vasomodulatory molecules in a HUASMCs/HUVECs co-culture model. Planta Med 78:1571–1573

    Article  CAS  PubMed  Google Scholar 

  91. Boomgaarden I, Egert S, Rimbach G, Wolffram S, Muller MJ, Doring F (2010) Quercetin supplementation and its effect on human monocyte gene expression profiles in vivo. Br J Nutr 104:336–345

    Article  CAS  PubMed  Google Scholar 

  92. Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–6093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R (2003) Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 23:622–629

    Article  CAS  PubMed  Google Scholar 

  94. Lee B, Moon SK (2005) Resveratrol inhibits TNF-alpha-induced proliferation and matrix metalloproteinase expression in human vascular smooth muscle cells. J Nutr 135:2767–2773

    Article  CAS  PubMed  Google Scholar 

  95. Calabriso N, Massaro M, Scoditti E, Pellegrino M, Ingrosso I, Giovinazzo G, Carluccio MA (2016) Red grape skin polyphenols blunt matrix metalloproteinase-2 and-9 activity and expression in cell models of vascular inflammation: protective role in degenerative and inflammatory diseases. Molecules 21(9):1147

    Article  CAS  Google Scholar 

  96. Pendurthi UR, Williams JT, Rao LVM (1999) Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells – a possible mechanism for the cardiovascular benefits associated with moderate consumption of wine. Arterioscler Thromb Vasc Biol 19:419–426

    Article  CAS  PubMed  Google Scholar 

  97. Takizawa Y, Kosuge Y, Awaji H, Tamura E, Takai A, Yanai T, Yamamoto R, Kokame K, Miyata T, Nakata R, Inoue H (2013) Up-regulation of endothelial nitric oxide synthase (eNOS), silent mating type information regulation 2 homologue 1 (SIRT1) and autophagy-related genes by repeated treatments with resveratrol in human umbilical vein endothelial cells. Br J Nutr 110:2150–2155

    Article  CAS  PubMed  Google Scholar 

  98. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, Csiszar A (2010) Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Phys Heart Circ Phys 299:H18–H24

    CAS  Google Scholar 

  99. Bresciani L, Calani L, Bocchi L, Delucchi F, Savi M, Ray S, Brighenti F, Stilli D, Del Rio D (2014) Bioaccumulation of resveratrol metabolites in myocardial tissue is dose-time dependent and related to cardiac hemodynamics in diabetic rats. Nutr Metab Cardiovasc Dis 24:408–415

    Article  CAS  PubMed  Google Scholar 

  100. Agarwal B, Campen MJ, Channell MM, Wherry SJ, Varamini B, Davis JG, Baur JA, Smoliga JM (2013) Resveratrol for primary prevention of atherosclerosis: clinical trial evidence for improved gene expression in vascular endothelium. Int J Cardiol 166:246–248

    Article  PubMed  Google Scholar 

  101. Tome-Carneiro J, Gonzálvez M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, Tomás-Barberán FA, García-Conesa MT, Espín JC et al (2013) Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drug Ther 27:37–48

    Article  CAS  Google Scholar 

  102. Tome-Carneiro J, Larrosa M, Yáñez-Gascón MJ, Dávalos A, Gil-Zamorano J, Gonzálvez M, García-Almagro FJ, Ruiz Ros JA, Tomás-Barberán FA, Espín JC, García-Conesa MT (2013) One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 72:69–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Apulia Region in the framework of the Projects NEWINE (Bando “Ricerca e sperimentazione in Agricoltura”; Project code PRS_042), SOLBIOGRAPE (Bando “Ricerca e sperimentazione in Agricoltura”; Project code PRS_053), and DOMINA APULIAE (POR Puglia FESR – FSE 2014-2020-Azione 1.6. – InnoNetwork; Project code AGBGUK2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Giovinazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Giovinazzo, G., Carluccio, M.A., Grieco, F. (2018). Wine Polyphenols and Health. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics