Skip to main content

Hot Metal Particles

  • Living reference work entry
  • First Online:
Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires
  • 214 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anon (2013) Standard for fire prevention during welding, cutting, and other hot work (NFPA 51B). NFPA, Quincy

    Google Scholar 

  • Babrauskas V (2003) Ignition handbook. Fire Science Publishers/Soc Fire Prot Eng, Issaquah

    Google Scholar 

  • Babrauskas V (2005) Risk of ignition of forest fires from black powder or muzzle-loading firearms. Report for US Forest Service, San Dimas T&D Center

    Google Scholar 

  • Babrauskas V (2018) Engineering guidance for smoldering fires. J Fire Invest Res Eng, to be published

    Google Scholar 

  • Chen JH et al (1989) A study of the mechanism for globular metal transfer from covered electrodes. Weld J 65(4):145-s–150-s

    Google Scholar 

  • Farrall GA, Hudda FG, Toney JG (1983) The time-resolved characterization of erosion products from high-current, copper vacuum arcs. IEEE Trans Plasma Sci 11:132–138

    Article  Google Scholar 

  • Finney MA et al (2016) A study of wildfire ignition by rifle bullets. Fire Tech 52:933–954

    Article  Google Scholar 

  • Frank-Kamenetskii DA (1969) Diffusion and heat transfer in chemical kinetics, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Gilbert/Commonwealth (1979) Transmission line reference book. Wind-induced conductor motion. Based on EPRI research project 792, EPRI, Menlo Park

    Google Scholar 

  • Gol’dshleger UI et al (1973) Ignition of a condensed explosive by a hot object of finite dimensions. Combust Explosion Shock Waves 9:99–102

    Article  Google Scholar 

  • Hadden RM (2011) Ignition of combustible fuel beds by hot particles: an experimental and theoretical study. Fire Tech 47:341–355

    Article  Google Scholar 

  • Hagimoto Y et al (1998) Scattering and ignite ng properties of sparks generated in an arc welding. 6th Indo Pacific Congress on Legal Medicine and Forensic Sciences (INPALMS), Yoyodo, pp 863–866

    Google Scholar 

  • Hagimoto Y et al (2007) A short-circuit as an ignition source. Interflam 2007:1555–1560

    Google Scholar 

  • Hagiwara T et al (1982) Ignition risk to combustibles by welding spatter (in Japanese). J Jpn Assn Fire Sci Engrg 32(5):8–12

    Google Scholar 

  • Hölemann H, Worpenberg R (1987) Untersuchungen zur Entstehung von Bränden durch Schweißen, Schneiden und verwandte Verfahren – Temperatur, Geschwindigkeit, GrÖße und Wärmeinhalt von Brennschneidschlacketeilchen, Schweißen und Schneiden 39(7):315–321

    Google Scholar 

  • Hölemann H, Worpenberg R (1992) Brandursache Schweißen, Brennschneiden und Löten – Zündmechanismen glühender Partikel. VFDB Z 41:79–89

    Google Scholar 

  • Howitt DG (2015) An assessment of hot metal fragments from heavy mechanical equipment as a potential ignition source for forest litter. J Fire Sci 33:427–444

    Article  Google Scholar 

  • Jones JC (1995) Improved calculations concerning the ignition of forest litter by hot particle ingress. J Fire Sci 13:350–356

    Article  Google Scholar 

  • Kim YS, Eagar TW (1993) Analysis of metal transfer in gas metal arc welding. Weld J 72(6):269-s–276-s

    Google Scholar 

  • Lewis K (2017) Hot particle ignition from arcing as a wildland fire cause. 2017 Wildland Fire Litigation Conf, San Diego

    Google Scholar 

  • Libershal B (1989) Target shooting, automatic rifles and steel core bullets. Wildfire Strikes Home 3(1):8–9

    Google Scholar 

  • Liñán A, Kindelán M (1981) Ignition of a reactive solid by an inert hot spot. In: Progress in astronautics and aeronautics, vol 76. AIAA, New York, pp 412–426

    Google Scholar 

  • Look A D (1948) Underground metal-mine fires from cutting and welding (IC 7453). Bureau of Mines

    Google Scholar 

  • Messler RW Jr (1999) Principles of welding. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Mikkelsen K (2014) An experimental investigation of ignition propensity of hot work processes in the nuclear industry (M.S. thesis), Univ Waterloo, Canada

    Google Scholar 

  • Mills AF, Hang X (1984) Trajectories of sparks from arcing aluminum power cables. Fire Tech 20:5–14

    Article  Google Scholar 

  • Mitchell J W (2009) Power lines and catastrophic wildland fire in southern California. Proc 11th Fire & Mater Conf

    Google Scholar 

  • Okegawa S et al (1996) Measurement of distance and ignition tests to gases by welding spatter (in Japanese). J Jpn Soc Saf Engrg 5(2):112–119

    Google Scholar 

  • Rallis CJ, Mangaya BM (2002) Ignition of veld grass by hot aluminium particles ejected from clashing overhead transmission lines. Fire Tech 38:81–92

    Article  Google Scholar 

  • Rogers RL et al (2006) Ignition of dust clouds and dust deposits by friction sparks and hotspots. Hazards XIX, paper 24, IChemE

    Google Scholar 

  • Rowntree GWG, Stokes AD (1994) Fire ignition by aluminium particles of controlled size. J Electr Electron Eng Aust 14:117–123

    Google Scholar 

  • Schōnherr W (1982) Fire risks with welding torches and manual arc welding – globules, spatter and how far they can be thrown. Schweiss Schneid 34(4):E74–E77

    Google Scholar 

  • Stokes AD (1990) Fire ignition by copper particles of controlled size. J Electr Electron Eng Aust 10:188–194

    Google Scholar 

  • Stokes AD (2001) Fire ignition by electrically produced incandescent particles. Dept Elec Eng, Univ Sydney, Australia

    Google Scholar 

  • Tanaka K et al (1997) Research on the locus and the velocity of spatter in shielded metal arc welding (in Japanese). Q J Jpn Weld Soc 15(2):247–253

    Article  Google Scholar 

  • Tanaka T (1977) On the inflammability of combustible materials by welding spatter (in Japanese). Rep Natl Res Inst Police Sci 30(1):51–58

    Google Scholar 

  • Tse SD, Fernandez-Pello AC (1998) On the flight paths of metal particles and embers generated by power lines in high winds – potential source of wildland fires. Fire Saf J 30:333–356

    Article  Google Scholar 

  • van Wingerden K et al (2011) Ignition of dust layers by mechanical sparks. Loss Prev Symp, AIChE

    Google Scholar 

  • Way PT (2017) Vegetation management and powerlines, 2017 Wildland fire litigation conf, San Diego

    Google Scholar 

  • Zak CD (2015) The effect of particle properties on hot particle spot fire ignition (Ph.D. diss), Univ Calif Berkeley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vytenis Babrauskas .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Babrauskas, V. (2018). Hot Metal Particles. In: Manzello, S. (eds) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires. Springer, Cham. https://doi.org/10.1007/978-3-319-51727-8_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51727-8_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51727-8

  • Online ISBN: 978-3-319-51727-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics