Skip to main content

Sensing, Signaling, and Uptake: An Introduction

  • Reference work entry
  • First Online:
Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 806 Accesses

Abstract

The three most frequent sensing and signal transduction mechanisms in bacteria are one- and two-component systems as well as chemosensory pathways, and members of these families were found to be involved in the sensing of hydrocarbons. These systems were shown to modulate the expression of hydrocarbon degradation pathways and efflux pumps as well as to mediate hydrocarbon chemotaxis. Hydrocarbons are thought to cross the outer membrane via specific pores and the inner membrane by diffusion. However, it still remains controversial as to whether there are also active hydrocarbon uptake mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bi S, Lai L (2015) Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci 72(4):691–708

    Article  CAS  PubMed  Google Scholar 

  • Busch A et al (2007) Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proc Natl Acad Sci U S A 104(34):13774–13779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch A et al (2009) The sensor kinase TodS operates by a multiple step phosphorelay mechanism involving two autokinase domains. J Biol Chem 284(16):10353–10360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181(10):3310–3316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwaki H et al (2007) Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 189(9):3502–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh S et al (2016) Molecular insights into toluene sensing in the TodS/TodT signal transduction system. J Biol Chem 291(16):8575–8590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacal J et al (2006) The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc Natl Acad Sci U S A 103(21):8191–8196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacal J et al (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13(7):1733–1744

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Plesiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28(2):337–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni B et al (2013) Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol Microbiol 90(4):813–823

    Article  CAS  PubMed  Google Scholar 

  • Parales RE et al (2008) Diversity of microbial toluene degradation pathways. Adv Appl Microbiol 64:1–73. 2 p following 264

    Article  CAS  PubMed  Google Scholar 

  • Parales RE et al (2015) Bacterial chemotaxis to xenobiotic chemicals and naturally-occurring analogs. Curr Opin Biotechnol 33:318–326

    Article  CAS  PubMed  Google Scholar 

  • Pham HT, Parkinson JS (2011) Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism. J Bacteriol 193(23):6597–6604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JL et al (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39(4):555–566

    Article  PubMed  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):1–26

    Google Scholar 

  • Silva-Jimenez H et al (2012) Study of the TmoS/TmoT two-component system: towards the functional characterization of the family of TodS/TodT like systems. Microb Biotechnol 5(4):489–500

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13(2):52–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3(128):ra50

    Article  PubMed  PubMed Central  Google Scholar 

  • Zschiedrich CP, Keidel V, Szurmant H (2016) Molecular mechanisms of two-component signal transduction. J Mol Biol 428(19):3752–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from FEDER funds and Fondo Social Europeo through grants from the Junta de Andalucía (grant CVI-7335) and the Spanish Ministry for Economy and Competitiveness (grants BIO2013-42297 and BIO2016-76779-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Krell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Krell, T. (2018). Sensing, Signaling, and Uptake: An Introduction. In: Krell, T. (eds) Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50542-8_29

Download citation

Publish with us

Policies and ethics