Skip to main content

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 1225 Accesses

Abstract

Production of biofuels by microbial fermentation is well established as illustrated by large-scale production of bioethanol. Recently, there has been focus on microbial production of advanced biofuels that can be used as drop-in fuels in both gasoline, diesel and jet fuels with the objective of providing an alternative to fuels derived from petroleum. Microorganisms have therefore been engineered to enable conversion of sugars into chemicals that can be used as biofuels, such as alcohols, fatty acid esters, and alkanes. Here we review recent progress on engineering microorganisms that can serve as cell factories for production of advanced biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham A, Mathew AK, Sindhu R, Pandey A, Binod P (2016) Potential of rice straw for bio-refining: an overview. Bioresour Technol 215:29–36

    Article  CAS  PubMed  Google Scholar 

  • Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci U S A 110(1):87–92

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Andre C, Kim SW, Yu XH, Shanklin J (2013) Fusing catalase to analkane-producing enzyme maintains enzymatic activity by converting the inhibitory by product H2O2 to the cosubstrate O2. Proc Natl Acad Sci U S A 110(8):3191–3196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohol sasbiofuels. Nature 451(7174):86–89

    Article  CAS  PubMed  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675

    Article  CAS  PubMed  Google Scholar 

  • Barney BM, Wahlen BD, Garner E, Wei J, Seefeldt LC (2012) Differences in substrate specificities of five bacterial wax ester synthases. Appl Environ Microbiol 78(16):5734–5745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 Genesin Escherichiacoli for acetone production and acetate detoxification. Appl Environ Microbiol 64(3):1079–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatti HN, Hanif MA, Qasim M (2008) Biodiesel production from waste tallow. Fuel 87(13):2961–2966

    Article  CAS  Google Scholar 

  • Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K, Bisaria VS, Kondo A (2012) Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl Microbiol Biotechnol 94(3):651–658

    Article  CAS  PubMed  Google Scholar 

  • Blombach B, Riester T, Wieschalka S, Ziert C, Youn J-W, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77(10):3300–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA and others (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switch grass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108(50):19949–19954

    Google Scholar 

  • Buijs NA, Zhou YJ, Siewers V, Nielsen J (2015) Long-chain alkane production by they east Saccharomyces cerevisiae. Biotechnol Bioeng 112(6):1275–1279

    Article  CAS  PubMed  Google Scholar 

  • Buschke N, Schäfer R, Becker J, Wittmann C (2013) Metabolic engineering of industrial plat form microorganisms for bio refinery applications—optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour Technol 135:544–554

    Article  CAS  PubMed  Google Scholar 

  • Cao YX, Xiao WH, Zhang JL, Xie ZX, Ding MZ, Yuan YJ (2016) Heterologous biosynthesis and manipulation of alkanes in Escherichia coli. Metab Eng 38:19–28

    Article  CAS  PubMed  Google Scholar 

  • Carlquist M, Gibson B, Karagul Yuceer Y, Paraskevopoulou A, Sandell M, Angelov AI, Gotcheva V, Angelov AD, Etschmann M, de Billerbeck G M and others (2015) Process engineering for bioflavour production with metabolically active yeasts – amini – review. Yeast 32(1):123–143

    Google Scholar 

  • Caspeta L, Nielsen J (2013) Economic and environmental impacts of microbial biodiesel. Nat Biotechnol 31:789–793

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502(7472):571–574

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Lee J, Jang YS, Lee SY (2014) Metabolic engineering of microorganisms for the production of higher alcohols. MBio 5(5):e01524–e01514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clomburg JM, Gonzalez R (2011) Metabolic engineering of Escherichia coli for the production of 1, 2-propanediol from glycerol. Biotechnol Bioeng 108:867–879

    Article  CAS  PubMed  Google Scholar 

  • De Domenico S, Strafella L, D’Amico L, Mastrorilli M, Ficarella A, Carlucci P, Santino A (2016) Biodiesel production from Cynara cardunculus L. and Brassica carinata A. Braun seeds and their suitability as fuels in compression ignition engines. Ital J Agron 11(1):47–56

    Article  Google Scholar 

  • de Jong BW, Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J (2015) Metabolic pathway engineering for fatty acid ethylester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol 42(3):477–486

    Article  PubMed  CAS  Google Scholar 

  • de Vos WM, Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol 22(2):72–79

    Article  PubMed  CAS  Google Scholar 

  • Dekishima Y, Lan EI, Shen CR, Cho KM, Liao JC (2011) Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc 133(30):11399–11401

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2008) Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers Manag 49(1):125–130

    Article  CAS  Google Scholar 

  • Diniz RH, Rodrigues MQ, Fietto LG, Passos FM, Silveira WB (2014) Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatal Agric Biotechnol 3(2):111–117

    Google Scholar 

  • Duan Y, Zhu Z, Cai K, Tan X, Lu X (2011) De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation. PLoS ONE 6(5):e20265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eryilmaz T, Yesilyurt MK, Cesur C, Gokdogan O (2016) Biodiesel production potential from oil seeds in Turkey. Renew Sust Energ Rev 58:842–851

    Article  CAS  Google Scholar 

  • Eser BE, Das D, Han J, Jones PR, Marsh EN (2011) Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehydedecarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 50(49):10743–10750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18(3):220–227

    Article  CAS  PubMed  Google Scholar 

  • Feofilova EP, Sergeeva IE, Ivashechkin AA (2010) Biodiesel-fuel: content, production, producers, contemporary biotechnology (review). Appl Biochem Microbiol 46(4):405–415

    Article  CAS  Google Scholar 

  • Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10(6):295–304

    Article  CAS  PubMed  Google Scholar 

  • Fletcher E, Krivoruchko A, Nielsen J (2016) Industrial systems biology and its impact on synthetic biology of yeast cell factories. Biotechnol Bioeng 113(6):1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Fu WJ, Chi Z, Ma ZC, Zhou HX, Liu GL, Lee CF, Chi ZM (2015) Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl Microbiol Biotechnol 99:7481–7494

    Article  CAS  PubMed  Google Scholar 

  • González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1, 3-propanediol from glycerol. Metab Eng 7(5):329–336

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Hägerdal B, Wahlbom CF, Gárdonyi M, van Zyl WH, Cordero Otero RR, Jönsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    PubMed  Google Scholar 

  • Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD and others. (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2(1):59–62

    Google Scholar 

  • Hirasawa T, Shimizu H (2016) Recent advances in amino acid production by microbial cells. Curr Opin Biotechnol 42:133–146

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Wong A, Foo JL, Ng J, Cao YX, Chang MW, Yuan YJ (2016) Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Biotechnol Bioeng 113(4):842–851

    Article  CAS  PubMed  Google Scholar 

  • Johnson ET, Schmidt-Dannert C (2008) Light-energy conversion in engineered microorganisms. Trends Biotechnol 26(12):682–689

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JY, Lee JW (2011) Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae. J Microbiol Biotechnol 21:846–853

    Article  CAS  PubMed  Google Scholar 

  • Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355–1358

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park W (2014) Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 98(16):6933–6946

    Article  CAS  PubMed  Google Scholar 

  • Kim S-J, Seo S-O, Jin Y-S, Seo J-H (2013) Production of 2, 3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274–281

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Hugenholtz J (2003) Metabolic pathway engineering in lactic acid bacteria. Curr Opin Biotechnol 14(2):232–237

    Article  CAS  PubMed  Google Scholar 

  • Kunjapur AM, Prather KL (2015) Microbial engineering for aldehyde synthesis. Appl Environ Microbiol 81(6):1892–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurnia JC, Jangam SV, Akhtar S, Sasmito AP, Mujumdar AS (2016) Advances in biofuel production from oil palm and palm oil processing wastes: a review. Biofuel Res J 3(1):332–346

    Article  CAS  Google Scholar 

  • Ladygina N, Dedyukhina E, Vainshtein M (2006) A review won microbial synthesis of hydrocarbons. Process Biochem 41(5):1001–1014

    Article  CAS  Google Scholar 

  • Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363

    Article  CAS  PubMed  Google Scholar 

  • Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanolincyano bacteria. Proc Natl Acad Sci U S A 109(16):6018–6023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33(10):1061–1072

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Lee DW (2013) Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 4:92

    PubMed  PubMed Central  Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101(2):209–228

    Article  CAS  PubMed  Google Scholar 

  • Lennen RM, Pfleger BF (2013) Microbial production of fatty acid-derived fuels and chemicals. Curr Opin Biotechnol 24(6):1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Cai H, Hao B, Zhang C, Yu Z, Zhou S, Chenjuan L (2010) Enhancing clostridial acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel. Appl Biochem Biotechnol 162(8):2381–2386

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wen J, Jia X (2011) Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway over expression. Appl Microbiol Biotechnol 91(3):577–589

    Article  CAS  PubMed  Google Scholar 

  • Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electro microbial conversion of CO2 to higher alcohols. Science 335(6076):1596

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Gao C, Tao F, Ma C (2015) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)-2, 3-butanediol from lignocellulose-derived sugars. Metab Eng 28:19–27

    Article  CAS  PubMed  Google Scholar 

  • Liu J-F, Nie K-L, Fan L-H, Wang F, Tan T-W, Deng L (2013a) Increased production of FAEEs for biodiesel with lipase enhanced Saccharomyces cerevisiae. Proc Biochem 48(8):1212–1215

    Article  CAS  Google Scholar 

  • Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, Du G, Chen J (2013a) Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biotechnol 97(14):6113–6127

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Redden H, Alper HS (2013b) Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 24(6):1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Liu J-z, Xu W, Chistoserdov A, Bajpai RK (2016) Glycerol dehydratases: biochemical structures, catalytic mechanisms, and industrial applicationsin 1, 3-propanediol production by naturally occurring and genetically engineered bacterial strains. Appl Biochemist Biotechnol 179:1073–1100.

    Google Scholar 

  • Loeschcke A, Thies S (2015) Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 99(15):6197–6214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love G, Gough S, Brady D, Barron N, Nigam P, Singh D, Marchant R, McHale A (1998) Continuous ethanol fermentation at 45 C using Kluyveromyces marxianus IMB3 immobilized in calcium alginate and kissiris. Bio Proc Eng 18(3):187–189

    CAS  Google Scholar 

  • Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JW, Jiang H, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697

    Article  CAS  PubMed  Google Scholar 

  • Neves AR, Pool WA, Kok J, Kuipers OP, Santos H (2005) Overview on sugar metabolism and its control in Lactococcus lactis – the input from in vivo NMR. FEMS Microbiol Rev 29(3):531–554

    CAS  PubMed  Google Scholar 

  • Nguyen AQ, Schneider J, Wendisch VF (2015) Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol 201:75–85

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55(3):263–283

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164(6):1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68

    Article  CAS  Google Scholar 

  • Nikel PI, Chavarría M, Danchin A, de Lorenzo V (2016) From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 34:20–29

    Article  CAS  PubMed  Google Scholar 

  • Ohta K, Beall D, Mejia J, Shanmugam K, Ingram L (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrzak W, Kawa-Rygielska J, Król B, Lennartsson PR, Taherzadeh MJ (2016) Ethanol, feed components and fungal biomass production from field bean (Vicia faba var. equina) seeds in an integrated process. Bioresour Technol 216:69–76

    Article  CAS  PubMed  Google Scholar 

  • Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C (2012) Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93(6):2279–2290

    Article  CAS  PubMed  Google Scholar 

  • Portnoy VA, Scott DA, Lewis NE, Tarasova Y, Osterman AL, Palsson B (2010) Deletion of genes encoding cytochrome oxidases and quinol monooxygenase blocks the aerobic-anaerobic shifting Escherichiacoli K-12 MG1655. Appl Environ Microbiol 76(19):6529–6540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Zhang J, Li L, Wen Z, Nomura CT, Wu S, Chen S (2016) Engineering Bacillus licheniformis for the production of meso-2, 3-butanediol. Biotechnol Biofuels 9(1):1

    Article  CAS  Google Scholar 

  • Ramos JL, SolCuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39(4):555–566

    Article  PubMed  Google Scholar 

  • Rodriguez GM, Atsumi S (2014) Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 25:227–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero S, Merino E, Bolívar F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol 73(16):5190–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77(5):1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562

    Article  CAS  PubMed  Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10(6):312–320

    Article  CAS  PubMed  Google Scholar 

  • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titeranaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77(9):2905–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V, Chaudhary DK, Mani I, Dhar PK (2016) Recent advances and challenges of the use of cyanobacteria towards the production of biofuels. Renew Sust Energ Rev 60:1–10

    Article  Google Scholar 

  • Smith KM, Cho K-M, Liao JC (2010) Engineering Corynebacterium glutamicum for is obutanol production. Appl Microbiol Biotechnol 87(3):1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srirangan K, Pyne ME, Perry Chou C (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102(18):8589–8604

    Article  CAS  PubMed  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562

    Article  CAS  PubMed  Google Scholar 

  • Stephenson A, Dennis J, Scott S (2008) Improving the sustainability of the production of biodiesel from oil seed rapein the UK. Process Saf Environ Prot 86(6):427–440

    Article  CAS  Google Scholar 

  • Tai YS, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K (2016) Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat Chem Biol 12(4):247–253

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Tan Y, Zhu H, Zhao K, Sehn W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75:1628–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teo WS, Ling H, Yu A-Q, Chang MW (2015) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short-and branched-chain alkyl esters biodiesel. Biotechnol Biofuels 8(1):1

    Article  CAS  Google Scholar 

  • Tippmann S, Chen Y, Siewers V, Nielsen J (2013) From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae. Biotechnol J 8:1435–1444

    Article  CAS  PubMed  Google Scholar 

  • Tippmann S, Scalcinti G, Siewers V, Nielsen J (2015) Production of farnesene and santalane by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng 113:72–81

    Article  PubMed  CAS  Google Scholar 

  • Trinh CT, Unrean P, Srienc F (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol 74(12):3634–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79:754–755

    Google Scholar 

  • Ui S, Okajima Y, Mimura A, Kanai H, Kudo T (1997) Molecular generation of an Escherichia colis train producing only the meso-isomer of 2, 3-butanediol. J Ferment Bio Eng 84(3):185–189

    Article  CAS  Google Scholar 

  • Wackett LP (2008) Microbial-based motor fuels: science and technology. Microbial Biotechnol 1(3):211–225

    Article  CAS  Google Scholar 

  • Wackett LP (2011) Engineering microbes to produce biofuels. Curr Opin Biotechnol 22(3):388–393

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka (e) nes. Biotechnol Biofuels 6(1):1

    Article  CAS  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A and others (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109(3):E111–E118

    Google Scholar 

  • Xu L, Wang S-K, Wang F, Guo C, Liu C-Z (2014) Improved biomass and Hydrocarbon productivity of Botryococcus braunii by periodic ultrasound stimulation. Bio Energy Res 7(3):986–992

    CAS  Google Scholar 

  • Xue J, Ahring BK (2011) Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol 77(7):2399–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yomano L, York S, Shanmugam K, Ingram L (2009) Deletion of methyl glyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 31(9):1389–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22(6):775–783

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Iverson AG, Grayburn WS (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30:335–342

    Article  CAS  PubMed  Google Scholar 

  • Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016a) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou YJ, Buijs NA, Zhu Z, Gómez DO, Boonsombuti A, Siewers V, Nielsen J (2016b) Harnessing yeast peroxisomes for biosynthesis of fatty acid-derived biofuels and chemicals with relieved side-pathway competition. J Am Chem Soc. https://doi.org/10.1021/jacs.6b07394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, J., Nielsen, J. (2017). Bioproduction of Fuels: An Introduction. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50436-0_365

Download citation

Publish with us

Policies and ethics