Skip to main content

Formation of Isoprenoids

  • Reference work entry
  • First Online:
Book cover Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

Isoprenoids, also known as terpenoids, are a diverse group of metabolites produced in all free-living organisms. They play an indispensable role in a wide variety of essential processes but also contribute to a better adaptation to the environment in the form of specialized secondary metabolites. In spite of their notable structural and functional diversity, all isoprenoids are synthesized from the same metabolic precursors, which are then converted into prenyl diphosphates of increasing length. Such basic prenyl diphosphate intermediates represent the starting point of downstream pathways leading to the formation of the vast diversity of end products. Here we present an overview of isoprenoid biosynthesis in microbes from the three kingdoms of life, namely, bacteria, archaea, and eukaryotic microorganisms (mainly microalgae and yeast), with a special emphasis on the research conducted during the last decade. We also discuss the main functional classes of isoprenoids occurring in these microorganisms by focusing in the representative model organisms of each kingdom. Finally, we examine key research needs in this field. This includes expanding our understanding of secondary isoprenoid metabolism in microbes, examining the evolutionary relationships between the two core biosynthetic pathways and improving our ability to engineer production of industrially useful isoprenoids in microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Hiraki T (2009) Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. Biochim Biophys Acta 1788:743–752

    Article  CAS  PubMed  Google Scholar 

  • Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azami Y, Hattori A, Nishimura H, Kawaide H, Yoshimura T, Hemmi H (2014) (R)-mevalonate 3-phosphate is an intermediate of the mevalonate pathway in Thermoplasma acidophilum. J Biol Chem 289:15957–15967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley M, Bron PA, Heuston S, Casey PG, Englert N, Wiesner J, Jomaa H, Gahan CG, Hill C (2008) Analysis of the isoprenoid biosynthesis pathways in Listeria monocytogenes reveals a role for the alternative 2-C-methyl-D-erythritol 4-phosphate pathway in murine infection. Infect Immun 76:5392–5401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  CAS  PubMed  Google Scholar 

  • Berthelot K, Estevez Y, Deffieux A, Peruch F (2012) Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94:1621–1634

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A 95:4126–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher Y, Huber H, L’Haridon S, Stetter KO, Doolittle WF (2001) Bacterial origin for the isoprenoid biosynthesis enzyme HMG-CoA reductase of the archaeal orders Thermoplasmatales and Archaeoglobales. Mol Biol Evol 18:1378–1388

    Article  CAS  PubMed  Google Scholar 

  • Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429

    Article  CAS  PubMed  Google Scholar 

  • Bramkamp M, Lopez D (2015) Exploring the existence of lipid rafts in bacteria. Microbiol Mol Biol Rev 79:81–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Parish T (2008) Dxr is essential in Mycobacterium tuberculosis and fosmidomycin resistance is due to a lack of uptake. BMC Microbiol 8:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496

    Article  CAS  PubMed  Google Scholar 

  • Calegari-Santos R, Diogo RA, Fontana JD, Bonfim TM (2016) Carotenoid production by halophilic archaea under different culture conditions. Curr Microbiol 72:641–651

    Article  CAS  PubMed  Google Scholar 

  • Carretero-Paulet L, Lipska A, Perez-Gil J, Sangari FJ, Albert VA, Rodriguez-Concepcion M (2013) Evolutionary diversification and characterization of the eubacterial gene family encoding DXR type II, an alternative isoprenoid biosynthetic enzyme. BMC Evol Biol 13:180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chappe B, Michaelis W, Albrecht P, Ourisson G (1979) Fossil evidence for a novel series of archaebacterial lipids. Naturwissenschaften 66:522–523

    Article  CAS  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  • Chew AG, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Ryu YW, Park YC, Seo JH (2009) Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q(10) production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene. J Biotechnol 144:64–69

    Article  CAS  PubMed  Google Scholar 

  • Dairi T (2005) Studies on biosynthetic genes and enzymes of isoprenoids produced by actinomycetes. J Antibiot (Tokyo) 58:227–243

    Article  CAS  Google Scholar 

  • Dellas N, Thomas ST, Manning G, Noel JP (2013) Discovery of a metabolic alternative to the classical mevalonate pathway. Elife 2:e00672

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumelin CE, Chen Y, Leconte AM, Chen YG, Liu DR (2012) Discovery and biological characterization of geranylated RNA in bacteria. Nat Chem Biol 8:913–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land? Evolution 66:2961–2968

    Article  CAS  PubMed  Google Scholar 

  • Ershov YV, Gantt RR, Cunningham FX Jr, Gantt E (2002) Isoprenoid biosynthesis in Synechocystis sp. strain PCC6803 is stimulated by compounds of the pentose phosphate cycle but not by pyruvate or deoxyxylulose-5-phosphate. J Bacteriol 184:5045–5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes JF, Lell B, Agnandji ST, Obiang RM, Bassat Q, Kremsner PG, Mordmuller B, Grobusch MP (2015) Fosmidomycin as an antimalarial drug: a meta-analysis of clinical trials. Future Microbiol 10:1375–1390

    Article  CAS  PubMed  Google Scholar 

  • Frank HA (1999) Incorporation of carotenoids into reaction Center and light-harvesting pigment-protein complexes. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Springer, Dordrecht, pp 235–244

    Google Scholar 

  • Frank A, Groll M (2017) The methylerythritol phosphate pathway to isoprenoids. Chem Rev 117:5675–5703

    Article  PubMed  CAS  Google Scholar 

  • Friesen JA, Rodwell VW (2004) The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 5:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6:488–494

    Article  CAS  PubMed  Google Scholar 

  • Furubayashi M, Saito K, Umeno D (2014) Evolutionary analysis of the functional plasticity of Staphylococcus aureus C30 carotenoid synthase. J Biosci Bioeng 117:431–436

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Honzatko RB, Peters RJ (2012) Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep 29:1153–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge D, Xue Y, Ma Y (2016) Two unexpected promiscuous activities of the iron-sulfur protein IspH in production of isoprene and isoamylene. Microb Cell Factories 15:79

    Article  CAS  Google Scholar 

  • Gerber NN, Lechevalier HA (1965) Geosmin, an earthly-smelling substance isolated from actinomycetes. Appl Microbiol 13:935–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    Article  CAS  PubMed  Google Scholar 

  • Grochowski LL, Xu H, White RH (2006) Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 188:3192–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruchattka E, Hadicke O, Klamt S, Schutz V, Kayser O (2013) In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Factories 12:84

    Article  CAS  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  • Hamano Y, Dairi T, Yamamoto M, Kuzuyama T, Itoh N, Seto H (2002) Growth-phase dependent expression of the mevalonate pathway in a terpenoid antibiotic-producing Streptomyces strain. Biosci Biotechnol Biochem 66:808–819

    Article  CAS  PubMed  Google Scholar 

  • Heuston S, Begley M, Davey MS, Eberl M, Casey PG, Hill C, Gahan CG (2012) HmgR, a key enzyme in the mevalonate pathway for isoprenoid biosynthesis, is essential for growth of Listeria monocytogenes EGDe. Microbiology 158:1684–1693

    Article  CAS  PubMed  Google Scholar 

  • Ivanov SS, Charron G, Hang HC, Roy CR (2010) Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J Biol Chem 285:34686–34698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Caforio A, Driessen AJ (2014) Biosynthesis of archaeal membrane ether lipids. Front Microbiol 5:641

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang J, He X, Cane DE (2007) Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat Chem Biol 3:711–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda K, Kuzuyama T, Takagi M, Hayakawa Y, Seto H (2001) An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. strain CL190. Proc Natl Acad Sci U S A 98:932–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Tsuda M, Omura S, Oikawa H, Ikeda H (2008) Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc Natl Acad Sci U S A 105:7422–7427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97:13172–13177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langworthy TA, Pond JL (1986) Archaebacterial ether lipids and chemotaxonomy. Syst Appl Microbiol 7:253–257

    Article  CAS  Google Scholar 

  • Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95:9413–9417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohr M, Schwender J, Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185-186:9–22

    Article  CAS  PubMed  Google Scholar 

  • Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99

    Article  CAS  PubMed  Google Scholar 

  • Lombard J, Lopez-Garcia P, Moreira D (2012) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10:507–515

    Article  CAS  PubMed  Google Scholar 

  • Lynen F (1967) Biosynthetic pathways from acetate to natural products. Pure Appl Chem 14:137–167

    Article  CAS  PubMed  Google Scholar 

  • Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JW, Jiang H, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697

    Article  CAS  PubMed  Google Scholar 

  • Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogi T, Saiki K, Anraku Y (1994) Biosynthesis and functional role of haem O and haem A. Mol Microbiol 14:391–398

    Article  CAS  PubMed  Google Scholar 

  • Nitschke W, Kramer D, Riedel A, Liebl U (1995) From naphtho-to benzoquinones-(r) evolutionary reorganizations of electron transfer chains. Photosynthesis: From Light to Biosphere 1:945–950

    Google Scholar 

  • Nupur LN, Vats A, Dhanda SK, Raghava GP, Pinnaka AK, Kumar A (2016) ProCarDB: a database of bacterial carotenoids. BMC Microbiol 16:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brian MR, Thony-Meyer L (2002) Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv Microb Physiol 46:257–318

    Article  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    Article  CAS  PubMed  Google Scholar 

  • Oldfield E, Lin FY (2012) Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl 51:1124–1137

    Article  CAS  PubMed  Google Scholar 

  • Omer CA, Gibbs JB (1994) Protein prenylation in eukaryotic microorganisms: genetics, biology and biochemistry. Mol Microbiol 11:219–225

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367

    Article  CAS  PubMed  Google Scholar 

  • Pan JJ, Solbiati JO, Ramamoorthy G, Hillerich BS, Seidel RD, Cronan JE, Almo SC, Poulter CD (2015) Biosynthesis of Squalene from Farnesyl Diphosphate in bacteria: three steps catalyzed by three enzymes. ACS Cent Sci 1:77–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Gil J, Rodriguez-Concepcion M (2013) Metabolic plasticity for isoprenoid biosynthesis in bacteria. Biochem J 452:19–25

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gil J, Calisto BM, Behrendt C, Kurz T, Fita I, Rodriguez-Concepcion M (2012a) Crystal structure of Brucella abortus deoxyxylulose-5-phosphate reductoisomerase-like (DRL) enzyme involved in isoprenoid biosynthesis. J Biol Chem 287:15803–15809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Gil J, Uros EM, Sauret-Gueto S, Lois LM, Kirby J, Nishimoto M, Baidoo EE, Keasling JD, Boronat A, Rodriguez-Concepcion M (2012b) Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway. PLoS One 7:e43775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson BC, Esberg B, Olafsson O, Bjork GR (1994) Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 76:1152–1160

    Article  CAS  PubMed  Google Scholar 

  • Phillips MA, Leon P, Boronat A, Rodriguez-Concepcion M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Concepcion M (2004) The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des 10:2391–2400

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruch S, Beyer P, Ernst H, Al-Babili S (2005) Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol Microbiol 55:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789

    Article  CAS  PubMed  Google Scholar 

  • Saenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O, Broda M, Simons K (2015) Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc Natl Acad Sci U S A 112:11971–11976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangari FJ, Perez-Gil J, Carretero-Paulet L, Garcia-Lobo JM, Rodriguez-Concepcion M (2010) A new family of enzymes catalyzing the first committed step of the methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacteria. Proc Natl Acad Sci U S A 107:14081–14086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69:585–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherzinger D, Ruch S, Kloer DP, Wilde A, Al-Babili S (2006) Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase. Biochem J 398:361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava S, Chattopadhyay A (2007) Influence of cholesterol and ergosterol on membrane dynamics using different fluorescent reporter probes. Biochem Biophys Res Commun 356:705–710

    Article  CAS  PubMed  Google Scholar 

  • Sojo V, Pomiankowski A, Lane N (2014) A bioenergetic basis for membrane divergence in archaea and bacteria. PLoS Biol 12:e1001926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touz ET, Mengin-Lecreulx D (2008) Undecaprenyl phosphate synthesis. EcoSal Plus 2013; https://doi.org/10.1128/ecosalplus.4.7.1.7

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Vannice JC, Skaff DA, Keightley A, Addo JK, Wyckoff GJ, Miziorko HM (2014) Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway. J Bacteriol 196:1055–1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Klein-Marcuschamer D, Kromer JO (2012) Examining the feasibility of bulk commodity production in Escherichia coli. Biotechnol Lett 34:585–596

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Behrendorff JBYH, Bongers M, Brennan TCR, Bruschi M, Nielsen LK (2015) Production of industrially relevant Isoprenoid compounds in engineered microbes. In: Kamm B (ed) Microorganisms in biorefineries. Springer, Berlin/Heidelberg, pp 303–334

    Google Scholar 

  • Vinokur JM, Cummins MC, Korman TP, Bowie JU (2016) An adaptation to life in acid through a novel mevalonate pathway. Sci Rep 6:39737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506

    Article  CAS  PubMed  Google Scholar 

  • Warlick BP, Evans BS, Erb TJ, Ramagopal UA, Sriram J, Imker HJ, Sauder JM, Bonanno JB, Burley SK, Tabita FR, Almo SC, Sweedler JS, Gerlt JA (2012) 1-methylthio-D-xylulose 5-phosphate methylsulfurylase: a novel route to 1-deoxy-D-xylulose 5-phosphate in Rhodospirillum rubrum. Biochemistry 51:8324–8326

    Article  CAS  PubMed  Google Scholar 

  • Weete JD, Abril M, Blackwell M (2010) Phylogenetic distribution of fungal sterols. PLoS One 5:e10899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkins K, Schöller C (2009) Volatile organic metabolites from selected Streptomyces strains. Actinomycetologica 23:27–33

    Article  CAS  Google Scholar 

  • Yamada Y, Kuzuyama T, Komatsu M, Shin-Ya K, Omura S, Cane DE, Ikeda H (2015) Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci U S A 112:857–862

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S, Nakamura S (2015) Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J Bacteriol 197:1614–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research at the authors’ laboratories was supported by a Marie Curie International outgoing Fellowship within the 7th European Community Framework Programme to JPG, an ERA-IB-2 project funded by the Spanish MINECO (PCIN-2015-103) to MRC, and a Queensland Government Accelerate Fellowship to CEV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Pérez-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pérez-Gil, J., Rodríguez-Concepción, M., Vickers, C.E. (2019). Formation of Isoprenoids. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50430-8_6

Download citation

Publish with us

Policies and ethics