Skip to main content

Diversity and Common Principles in Enzymatic Activation of Hydrocarbons: An Introduction

  • Reference work entry
  • First Online:
Aerobic Utilization of Hydrocarbons, Oils, and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Hydrocarbons are apolar compounds devoid of functional groups and therefore exhibit (with some exceptions) low chemical reactivity at room temperature. Utilization of hydrocarbons by microorganisms as growth substrates is initiated by the introduction of a functional group. An astounding diversity of activation reactions has evolved in microorganisms, notably in bacteria. Saturated hydrocarbons are activated by initial C–H-bond cleavage, while unsaturated (including aromatic) hydrocarbons are activated by an addition of a co-reactant to form an initial σ-bonded adduct. There is a principal difference between co-reactants and activation reactions in (1) aerobic and (2) anaerobic microorganisms. (1) Aerobic microorganisms always make use of molecular oxygen as a co-substrate so as to introduce one or two oxygen atoms by means of oxygenases. These enzymes usually contain metals (iron, copper). A common principle is the reduction of metal-bound O2 to the peroxide level; this converts into a metal-bound oxygen atom that performs the primary attack on the hydrocarbon. (2) Mechanisms in anaerobic activation of hydrocarbons are principally different. The anaerobic oxidation of methane is associated with a redox reaction of a nickel cofactor that is also involved in methanogenesis. The apparently most widely employed anaerobic activation mechanism of non-methane alkanes and alkyl-substituted aromatic hydrocarbons is a C–H-bond cleavage by a protein-hosted radical followed by addition of the radical product to fumarate; this results in a substituted succinate. A few alkyl-substituted aromatic hydrocarbons may be anaerobically hydroxylated (with the HO-group originating from H2O) at the side chain. In addition, there may be yet unknown mechanisms in anaerobic hydrocarbon activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Chemical generation of singlet dioxygen is difficult to achieve. An example is the oxidation of hydrogen peroxide with hypochlorous acid \( \left({\mathrm{H}}_2{\mathrm{O}}_2+\mathrm{HClO}\to {\mathrm{H}}_2\mathrm{O}\ {+}^1{\Delta}_g\;{\mathrm{O}}_2+{\mathrm{Cl}}^{-}+{\mathrm{H}}^{+}\right) \).

  2. 2.

    Another redox potential often indicated, \( {E}^{{}^{\circ}}=-0.16\ \mathrm{V} \), is based on standard activity (concentration) of aqueous O2 (dissolved in H2O) dissolved. Despite the relatively negative standard redox potential, the low \( {{\mathrm{O}}_2}^{\bullet -} \) concentration that is in equilibrium with O2 can nevertheless be relevant with respect to reactivity. Also, the equilibrium concentration of \( {{\mathrm{O}}_2}^{\bullet -} \) (that is formed by a one-electron step) does not decrease as dramatically (factor 10 per 0.0592 V, according to Nernst equation) with increasing redox potential as that of species formed by a two electron step (factor 100 per 0.0592 V). The reduction around \( \mathrm{pH}=7 \) does not involve a proton, because superoxide is deprotonated \( \left({{\mathrm{O}}_2}^{\bullet -}/{{\mathrm{HO}}_2}^{\bullet },{\mathrm{pK}}_{\mathrm{a}}=4.6\right) \).

  3. 3.

    Hence, the formal oxidation state of the carbon changes by \( +\mathrm{II} \). Assignment of formal oxidation states to the involved C–atoms before and after oxygenation may thus be used to check consistency of the formulated activation reaction. Examples: In terminal alkane oxygenation, the methyl group \( \left(-{\mathrm{CH}}_3,-\mathrm{III}\right) \) is converted to a hydroxymethyl group \( \left(-{\mathrm{CH}}_2\mathrm{OH},-\mathrm{I}\right) \). In an aromatic hydrocarbon, the (formally localized) “vinylen” \( \left(- \mathrm{CH}=\mathrm{CH} - , 2\times -\mathrm{I}=-\mathrm{I}\mathrm{I}\right) \) can be dioxygenated yielding a hydrodiol \( \left(-\mathrm{CHOH}-\mathrm{CHOH}-,2\times 0=0\right) \) and a non-aromatic ring, or can be monooxygenated yielding an “enol” \( \left(-\mathrm{CH}=\mathrm{COH}-,-\mathrm{I}+\mathrm{I}=0\right) \) with maintenance of the aromatic ring. However, because the two electrons for O2 reduction are derived from an intermediate of hydrocarbon degradation, oxygenation totally consumes 4 electrons from the hydrocarbon substrate (Fig. 2)

  4. 4.

    Named after the National Institute of Health where this hydrogen shift was first detected (Guroff et al. 1967).

  5. 5.

    Abbreviation AMO must not be confused with the same one sometimes used for alkene monooxygenase.

References

  • Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369

    Article  CAS  PubMed  Google Scholar 

  • Austin RN, Buzzi K, Kim E, Zylstra GJ, Groves JT (2003) Xylene monooxygenase, a membrane-spanning non-heme diiron enzyme that hydroxylates hydrocarbons via a substrate radical intermediate. J Biol Inorg Chem 8:733–740

    Article  CAS  PubMed  Google Scholar 

  • Baird WM, Hooven LA, Mahadevan(2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanisms of action. Environ Mol Mutagen 45: 106–114.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian R, Rosenzweig AC (2007) Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Acc Chem Res 40:573–580

    Article  CAS  PubMed  Google Scholar 

  • Ballou DP, Entsch B, Cole LJ (2005) Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Biochem Biophys Res Commun 338:590–598

    Article  CAS  PubMed  Google Scholar 

  • Bathelt CM, Mulholland AJ, Harvey JN (2008) QM/MM modeling of benzene hydroxylation in human cytochrome P450 2C9. J Phys Chem A. https://doi.org/10.1021/jp8016908

    Article  PubMed  Google Scholar 

  • Bédard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    PubMed  PubMed Central  Google Scholar 

  • Beller HR, Spormann AM (1997) Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J Bacteriol 179:670–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beller H, Reinhard M, Grbić-Galić D (1992) Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl Environ Microbiol 58:3192–3195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beltrametti F, Marconi A, Bestetti G, Colombo C, Galli E, Ruzzi M, Zennaro E (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD (2005) Idenfication, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 187:5090–5096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand E, Sakai R, Rozhkova-Novosad E, Moe L, Fox BG, Groves JT, Austin RN (2005) Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells. J Inorg Biochem 99:1998–2006

    Article  CAS  PubMed  Google Scholar 

  • Biegert T, Fuchs F, Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238:661–668

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Estelmann S, Heider J (2018) Anaerobic Degradation of Hydrocarbons: Mechanisms of Hydrocarbon Activation in the Absence of Oxygen. In: Boll M (ed) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham

    Chapter  Google Scholar 

  • Boyd DR, Sharma ND, Allen CR (2001) Aromatic dioxygenases: molecular biocatalysis and applications. Curr Opin Biotechnol 12:564–573

    Article  CAS  PubMed  Google Scholar 

  • Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101

    Article  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaetae chrysosporium. Appl Environ Microbiol 55:154–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burrows KJ, Cornish A, Scott D, Higgins IJ (1984) Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b. J Gen Microbiol 130:327–333

    Google Scholar 

  • Caldwell ME, Suflita JM (2000) Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol 34:1216–1220

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Chakrabarty S, Austin RN, Deng D, Groves JT, Lipscomb JD (2007) Radical intermediates in monooxygenase reactions of Rieske dioxygenases. J Am Chem Soc 129:3514–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SI, Yu SS-F (2008) Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: the case for a tricopper cluster. Acc Chem Res 41:969–979

    Article  CAS  PubMed  Google Scholar 

  • Chen PP-Y, Yang RB-G, Lee JC-M, Chan SI (2007) Facile O-atom insertion into C−C and C−H bonds by a trinuclear copper complex designed to harness a singlet oxene. Proc Natl Acad Sci 104:14570–14575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coates JD, Chakraborty R, McInerney MJ (2002) Anaerobic benzene biodegradation − a new era. Res Microbiol 153:621–628

    Article  CAS  PubMed  Google Scholar 

  • Coon MJ (2005) Omega hydroxylases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338:378–385

    Article  CAS  PubMed  Google Scholar 

  • Crosbie SJ, Blain PG, Williams FM (1997) Metabolism of n-hexane by rat liver and extrahepatic tissues and the effect of cytochrome P-450 inducers. Hum Exp Toxicol 16:131–137

    Article  CAS  PubMed  Google Scholar 

  • Cryle MJ, Schlichting I (2008) Structural insights from a P450 carrier protein complex reveal how specificity is achieved in the P450 (BioI) ACP complex. Proc Natl Acad Sci USA 105:15696–15701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277

    Article  CAS  PubMed  Google Scholar 

  • Elshahed MS, Gieg LM, McInerney MJ, Suflita JM (2001) Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ Sci Technol 35:682–689

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF (1990) Der Sauerstoff. Wissenschaftsverlag, Mannheim

    Google Scholar 

  • Erwin DP, Erickson IK, Delwiche ME, Colwell FS, Strap JL, Crawford RL (2005) Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer. Appl Environ Microbiol 71:2016–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    Article  CAS  PubMed  Google Scholar 

  • Evans PJ, Mang DT, Kim KS, Young LY (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol 57:1139–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fasan R, Chen MM, Crook NC, Arnold FH (2007) Engineered alkane-hydroxylating cytochrome P450BM3 exhibiting nativelike catalytic properties. Angew Chem Int Ed Engl 46:8414–8418

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2008) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80–2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104:5602–5607

    Article  CAS  Google Scholar 

  • Fosdike WL, Smith TJ, Dalton H (2005) Adventitious reactions of alkene monooxygenase reveal common reaction pathways and component interactions among bacterial hydrocarbon oxygenases. FEBS J 272:2661–2669

    Article  CAS  PubMed  Google Scholar 

  • Frommer U, Ullrich V, Staudinger H, Orrenius S (1972) The monooxygenation of n-heptane by rat liver microsomes. Biochim Biophys Acta 280:487–494

    Article  CAS  PubMed  Google Scholar 

  • Funhoff EG, Bauer U, García-Rubio I, Witholt B, van Beilen JB (2006) CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 188:5220–5227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golding BT, Watson WP (1999) Possible mechanisms of carcinogenesis after exposure to benzene. IARC Sci Publ 150:75–88

    CAS  Google Scholar 

  • Green J, Dalton H (1989) Substrate specificity of soluble methane monooxygenase. J Biol Chem 264:17698–17703

    CAS  PubMed  Google Scholar 

  • Groves JT (2006) High-valent iron in chemical and biological oxidations. J Inorg Biochem 100:434–447

    Article  CAS  PubMed  Google Scholar 

  • Guroff G, Daly JW, Jerina DM, Renson J, Witkop B, Udenfriend S (1967) Hydroxylation-induced migration: the NIH shift. Science 157:1524–1530

    Article  CAS  PubMed  Google Scholar 

  • Haddock JD (2010) Aerobic Degradation of Aromatic Hydrocarbons: Enzyme Structures and Catalytic Mechanisms. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Hakemian AS, Kondapalli KC, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry 47:6793–6801

    Article  CAS  PubMed  Google Scholar 

  • Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing Archaea. Appl Environ Microbiol 69:5483–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han W-G, Noodleman L (2008) Structural model for the peroxo intermediate P and the reaction pathway from P → Q of methane monooxygenase using broken-symmetry density functional calculations. Inorg Chem 47:2975–2986

    Article  CAS  PubMed  Google Scholar 

  • Harder J (2010) Anaerobic Degradation of Isoprene-Derived Compounds. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Harmer J, Finazzo C, Piskorski R, Ebner S, Duin EC, Goenrich M, Thauer RK, Reiher M, Schweiger A, Hinderberger D, Jaun B (2008) A nickel hydride complex in the active site of methyl-coenzyme M reductase: implications for the catalytic cycle. J Am Chem Soc 130:10907–10920

    Article  CAS  PubMed  Google Scholar 

  • Hedegaard J, Gunsalus IC (1965) Mixed function oxidation. J Biol Chem 240:4038–4043

    CAS  PubMed  Google Scholar 

  • Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 11:188–194

    Article  CAS  PubMed  Google Scholar 

  • Isin EM, Guengerich EP (2008) Substrate binding to cytochrome P450. Anal Bioanal Chem 392:1019–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183:4536–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Käppeli O (1986) Cytochromes P-450 of yeasts. Microbiol Rev 50:244–258

    PubMed  PubMed Central  Google Scholar 

  • Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299:1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Kniemeyer O, Heider J (2001) Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276:21381–21386

    Article  CAS  PubMed  Google Scholar 

  • Kniemeyer O, Fischer T, Wilkes H, Glöckner F-O, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kniemeyer O, Musat F, Sievert S, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye S, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–902

    Article  CAS  PubMed  Google Scholar 

  • Kovaleva EG, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Finding intermediates in the O2 activation pathways of non-heme iron oxgenases. Acc Chem Res 40:475–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidise methane anaerobically. Nature 426:878–881

    Article  PubMed  CAS  Google Scholar 

  • Kweon O, Kim S-J, Baek S, Chae J-C, Adjei MD, Baek D-H, Kim Y-C, Cerniglia CE (2008) A new classification system for bacteria Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochem. doi:10.1186/1471-2091-9/11

    Article  PubMed  PubMed Central  Google Scholar 

  • Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479

    Article  CAS  PubMed  Google Scholar 

  • Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Barlam M, Wang L, Rao Z (2008) Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol 376:453–465

    Article  CAS  PubMed  Google Scholar 

  • Liebermann RL, Rosenzweig AC (2005) Crystal structure of membrane-bound metalloenzyme that catalyzes the biological oxidation of methane. Nature 434:177–182

    Article  CAS  Google Scholar 

  • Lippard SJ (2005) Hydroxylation of C-H bonds at carboxylate-bridged diiron centres. Philos Trans R Soc Lond A 363:861–877

    Article  CAS  Google Scholar 

  • Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48:371–399

    Article  CAS  PubMed  Google Scholar 

  • Lorimer GH (1981) The carboxylation and oxygenation of ribulose-1,5-bisphosphate: the primary events in photosynthesis and photorespiration. Annu Rev Plant Physiol 32:349–383

    Article  CAS  Google Scholar 

  • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maeng JH, Sakai Y, Tani Y, Kato N (1996) Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. J Bacteriol 178:3695–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinho M, Choi DW, Dispirito AA, Antholine WE, Semrau JD, Münck E (2007) Mössbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus Bath: evidence for a diiron center. J Am Chem Soc 129:15783–15785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morohashi K, Sadano H, Okada Y, Omura T (1982) Position specificity in n-hexane hydroxylation by two forms of cytochrome P-450 in rat liver microsomes. J Biochem 93:413–419

    Article  Google Scholar 

  • Munro AW, Girvan HM, McLean KJ (2007) Variations on a theme – novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 24:585–609

    Article  CAS  PubMed  Google Scholar 

  • Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332

    Article  CAS  PubMed  Google Scholar 

  • Musat F, Widdel F (2009) Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype. Environ Microbiol 10:10–19

    Google Scholar 

  • Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219

    Article  CAS  PubMed  Google Scholar 

  • Oku Y, Ohtaki A, Kamitori S, Nakamura N, Yohda M, Ohno H, Kawarabayasi Y (2004) Structure and direct electrochemistry of cytochrome P450 from the thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. J Inorg Biochem 98:1194–1199

    Article  CAS  PubMed  Google Scholar 

  • Perbellini L, Brugnone F, Pavan I (1980) Identification of the metabolites of n-hexane, cyclohexane, and their isomers in men’s urine. Toxicol Appl Pharmacol 53:220–229

    Article  CAS  PubMed  Google Scholar 

  • Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700

    Article  CAS  PubMed  Google Scholar 

  • Powley MW, Carlson GP (2000) Cytochrome P450 involved with benzene metabolism in hepatic and pulmonary microsomes. J Biochem Mol Toxicol 14:303–309

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in the metabolism of n-hexane in a denitrifying bacterium. J Bacteriol 183:1707–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damsté JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  PubMed  Google Scholar 

  • Reineke W (2001) Aerobic and anaerobic biodegradation potentials of microorganisms. In: Beek B (ed) The handbook of environmental chemistry, vol. 2, part K, Biodegradation and persistence. Springer, Berlin, pp. 1–161.

    Google Scholar 

  • Resnick SM, Lee K, Gibson DT (1996) Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp strain NCIB 9816. J Ind Microbiol 17:438–457

    CAS  Google Scholar 

  • Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–543

    Article  CAS  PubMed  Google Scholar 

  • Safinowski M, Meckenstock RU (2006) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ Microbiol 8:347–352

    Article  CAS  PubMed  Google Scholar 

  • Sawyer DT (1981) How super is superoxide? Acc Chem Res 14:393–400

    Article  CAS  Google Scholar 

  • Sazinsky MH, Bard J, Di Donato A, Lippard SJ (2004) Crystal structure of the toluene/o-xylene monooxygenase hydroxylase from Pseudomonas stutzeri OX1. J Biol Chem 279:30600–30610

    Article  CAS  PubMed  Google Scholar 

  • Scheller U, Zimmer T, Kärgel E, Schunck W-H (1996) Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4. Arch Biochem Biophys 328:245–254

    Article  CAS  PubMed  Google Scholar 

  • Schink B (1985) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol Lett 31:69–77

    Article  CAS  Google Scholar 

  • Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar S (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  • Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH (2007) Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Proc Natl Acad Sci USA 104:3073–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Ann Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  Google Scholar 

  • Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol 8:643–648

    Article  CAS  PubMed  Google Scholar 

  • Smith BD, Sanders JL, Porubsky PR, Lushington GH, Stout CD, Scott EE (2007) Structure of the human lung cytochrome P450 2A13. J Biol Chem 282:17306–17313

    Article  CAS  PubMed  Google Scholar 

  • So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69:3892–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spormann AM, Widdel F (2001) Metabolism of alkylbenzenes, alkanes and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105

    Article  Google Scholar 

  • Szaleniec M, Hagel C, Menke M, Nowak P, Witko M, Heider J (2007) Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase. Biochemistry 46:7637–7646

    Article  CAS  PubMed  Google Scholar 

  • Taupp M, Constan L, Hallam S (2010) The Biochemistry of Anaerobic Methane Oxidation. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Thauer RK, Shima S (2008) Methane as a fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125:158–170

    Article  CAS  PubMed  Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingson TE, Kotlar H-K, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acitnetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullrich R, Hofrichter M (2007) Enyzmatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293

    Article  CAS  PubMed  Google Scholar 

  • Ulrich AC, Beller HR, Edwards EA (2005) Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 39:6681–6691

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Schmid RD (2006) Recent advances in oxygenase-catalyzed biotransformations. Curr Opin Chem Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Neuenschwander M, Smits THM, Roth C, Balada SB, Witholt B (2002) Rubredoxins involved in alkane oxidation. J Bacteriol 184:1722–1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689

    Article  PubMed  CAS  Google Scholar 

  • Whittington DA, Lippard SJ (2001) Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site. J Am Chem Soc 123:827–38

    Article  CAS  PubMed  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  PubMed  Google Scholar 

  • Widdel F, Musat F, Knittel K, Galusko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria. Cambridge University Press, Cambridge, pp 265–303

    Chapter  Google Scholar 

  • Wilkes H, Rabus R, Fischer T, Armstroff A, Behrend A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Arch Microbiol 177:235–243

    Article  CAS  PubMed  Google Scholar 

  • Wolter M, Zadrazil F, Martens R, Bahadir M (1997) Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate. Appl Microbiol Biotechnol 48:398–404

    Article  CAS  Google Scholar 

  • Yoshizawa K, Yumura T (2003) A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase. Chem Eur J 9:2347–2358

    Article  CAS  PubMed  Google Scholar 

  • Zahn JA, Arciero DM, Hooper AB, DiSpirito AA (1996) Evidence for an iron center in the ammonia monooxygenase from Nitrosomonas europaea. FEBS Lett 397:35–38

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Widdel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Widdel, F., Musat, F. (2019). Diversity and Common Principles in Enzymatic Activation of Hydrocarbons: An Introduction. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50418-6_50

Download citation

Publish with us

Policies and ethics