Skip to main content

Global Consequences of the Microbial Production and Consumption of Inorganic and Organic Sulfur Compounds

  • Reference work entry
  • First Online:
Aerobic Utilization of Hydrocarbons, Oils, and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 1410 Accesses

Abstract

This chapter is a very brief outline of the consequences of the activities of microorganisms such as (1) the sulfate-reducing and sulfur-oxidizing bacteria, (2) bacteria able to metabolize the complex organosulfur compounds found in oil and coal, (3) the organisms that produce dimethylsulfide in the oceans, and (4) the effects that the activities of these organisms may have on the Earth over geological and human timescales. It is a short overview that aims to provide links into the huge literature on all of these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbad-Andaloussi S, Warzywoda M, Monot F (2003) Microbial desulfurization of diesel oils by selected bacterial strains. Oil Gas Sci Technol Rev IFP 58:505–513

    Article  CAS  Google Scholar 

  • Andreae MO (1990) Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem 30:1–29

    Article  CAS  Google Scholar 

  • Aragon PE, Romero J, Negrete P, Sharma V (2005) Desulfurization of Mexican heavy oil by sulfate-reducing bacteria. J Environ Sci Health A 40:553–558

    Article  CAS  Google Scholar 

  • Barton LL, Fauque GD (2009) Physiology and biochemistry of sulfate-reducing bacteria in activated sludge. Environ Sci Technol 38:2038–2043

    Google Scholar 

  • Barton LL, Hamilton WA (2007) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Beech IB, Sumner JA (2007) Sulphate-reducing bacteria and their role in corrosion of ferrous metals. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 459–482

    Chapter  Google Scholar 

  • Bruschi M, Barton LL, Goulhen F, Plunkett RM (2007) Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 435–458

    Chapter  Google Scholar 

  • Clemente R, Walker DJ, Roig A, Bernal MP (2003) Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznacóllar (Spain). Biodegradation 14:199–205

    Article  CAS  Google Scholar 

  • Deuser WG (1973) Cariaco Trench: oxidation of organic matter and residence time of anoxic water. Nature 242:601–603

    Article  CAS  Google Scholar 

  • Ensley BD (1975) Microbial metabolism of condensed thiophenes. In: Greenberg DM (ed) Metabolic pathways, The metabolism of sulfur compounds, vol vol 7. Academic Press, New York, pp 309–317

    Google Scholar 

  • Fedorak PM et al (1986) Microbial release of 226Ra+ from (Ba,Ra)SO4 sludges from uranium mine wastes. Appl Environ Microbiol 52:262–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox JG, Dewhurst JE, Fraser GJ, Paster BJ, Shames B, Murphy JC (1994) Intracellular Campylobacter-like organism from ferrets and hamsters with proliferative bowel disease is a Desulfovibrio sp. J Clin Microbiol 32:1229–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson GR, Macfarlane GT, Cummings JH (1988) Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J Appl Bacteriol 65:103–111

    Article  CAS  Google Scholar 

  • Goldstein EJC, Citron DM, Peraino VA, Cross SA (2003) Desulfovibrio desulfuricans bacteremia and a review of human Desulfovibrio infections. J Clin Microbiol 41:2752–2754

    Article  Google Scholar 

  • Kelly DP (1996) Perspectives on the microbiology of atmospheric trace gases. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. Sources, sinks and global change processes. Springer, Berlin, pp 289–295

    Chapter  Google Scholar 

  • Kelly DP, Murrell JC (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172:341–348

    Article  CAS  Google Scholar 

  • Kelly DP, Smith NA (1990) Organic sulfur compounds in the environment. Adv Microb Ecol 11:345–385

    Article  CAS  Google Scholar 

  • Kiene RP (1996) Microbiological controls on dimethylsulfide emissions from wetlands and the oceans. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. Sources, sinks and global change processes. Springer, Berlin, pp 205–225

    Chapter  Google Scholar 

  • Kiene RP et al (2007) Distribution and cycling of dimethylsulfide, dimethylsulfoniopropionate, and dimethylsulfoxide during spring and early summer in the Southern Ocean south of New Zealand. Aquat Sci 69:289–426

    Article  Google Scholar 

  • Kump LR, Pavlov A, Arthur MA (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33:397–400

    Article  CAS  Google Scholar 

  • Lens PNL, Vallero M, Esposito G (2007) Bioprocess engineering of sulphate reduction for environmental biotechnology. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 383–404

    Chapter  Google Scholar 

  • Loubinoux J, Bronowicji J-P, IAC P, Moungenel J-L, Faou AE (2002) Sulphate-reducing bacteria in human faeces and their association with inflammatory diseases. FEMS Microbiol Ecol 40:107–112

    Article  CAS  Google Scholar 

  • Macfarlane GT, Cummings JH, Macfarlane S (2007) Sulphate-reducing bacteria and the human large intestine. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 503–521

    Chapter  Google Scholar 

  • Marcelis CLM, Ivanova AE, Janssen AJH, Stams AJM (2003) Anaerobic desulphurisation of thiophenes by mixed microbial communities from oilfields. Biodegradation 14:173–182

    Article  CAS  Google Scholar 

  • Morris I, Glover HE, Kaplan WA, Kelly DP, Weightman AL (1985) Microbial activity in the Cariaco Trench. Microbios 42:133–144

    Google Scholar 

  • Murrell JC, Kelly DP (1996) Microbiology of atmospheric trace gases. Sources, sinks and global change processes. Springer, Berlin

    Book  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    Article  CAS  Google Scholar 

  • Okabe S (2007) Ecophysiology of sulphate-reducing bacteria in environmental biofilms. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 359–381

    Chapter  Google Scholar 

  • Ollivier B, Cayol J-L, Fauque G (2007) Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 305–328

    Chapter  Google Scholar 

  • Olson KR (2008) Hydrogen sulfide and oxygen sensing: implications in cardiovascular control. J Exp Biol 211:2727–2734

    Article  CAS  Google Scholar 

  • Parker CD (1945) The corrosion of concrete. I. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmosphere containing hydrogen sulphide. Aust J Exp Biol Med Sci 23:81–90

    Article  CAS  Google Scholar 

  • Postgate JR (1979) The sulphate-reducing bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Tuttle JH, Jannasch HW (1979) Microbial dark assimilation of CO2 in the Cariaco Trench. Limnol Oceanogr 24:746–753

    Article  CAS  Google Scholar 

  • Widdel F, Musat F, Knittel K, Galushko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 265–303

    Chapter  Google Scholar 

  • Yu B, Xu P, Shi Q, Ma C (2006) Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72:54–58

    Article  CAS  Google Scholar 

  • Zhang J-Z, Millard FJ (1997) The chemistry of the anoxic waters of the Cariaco Trench. Deep-Sea Res 1(40):1023–1041

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donovan P. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kelly, D.P., Wood, A.P. (2019). Global Consequences of the Microbial Production and Consumption of Inorganic and Organic Sulfur Compounds. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50418-6_48

Download citation

Publish with us

Policies and ethics