Skip to main content

Bacterial Metabolism of Steroids

  • Reference work entry
  • First Online:
Aerobic Utilization of Hydrocarbons, Oils, and Lipids

Abstract

Steroids are naturally occurring hydrophobic molecules frequently found in the biosphere. Currently, a considerable amount of steroid hormones are released into the environment as a result of human activity being now considered a new class of pollutants. This fact is generating an increasing concern about its effects in the environment, because in spite of its ubiquity in nature, most of the steroidal compounds are highly recalcitrant to microbial degradation. Bacterial transformation of steroid compounds has attracted increasing interest due to the biotechnological applications since sterol-degrading microorganisms have already been used for industrial production of steroidal drugs from low-cost natural sterols such as phytosterols. In these bacteria, a large set of catabolic genes has been identified based on gene annotation and biochemical and transcriptomic analyses. The recent knowledge on the microbial metabolism of steroids is reviewed by describing the steps involved in the catabolic pathways under both aerobic and anaerobic conditions. This background information will be helpful for metabolic engineering of steroid-transforming bacteria for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andor A, Jekkel A, Hopwood DA, Jeanplong F, Ilkoy E, Konya A, Kurucz I, Ambrus G (2006) Generation of useful insertionally blocked sterol degradation pathway mutants of fast-growing mycobacteria and cloning, characterization, and expression of the terminal oxygenase of the 3-ketosteroid 9α-hydroxylase in Mycobacterium smegmatis mc2155. Appl Environ Microbiol 72:6554–6559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrientos A, Merino E, Casabon I, Rodríguez J, Crowe AM, Holert J, Philipp B, Eltis LD, Olivera ER, Luengo JM (2015) Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21. Environ Microbiol 17:47–63

    Article  CAS  PubMed  Google Scholar 

  • Bergstrand LH, Cardenas E, Holert J, Van Hamme JD, Mohn WW (2016) Delineation of steroid-degrading microorganisms through comparative genomic analysis. MBio 7:e00166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birkenmaier A, Holert J, Erdbrink H, Moeller HM, Friemel A, Schoenenberger R, Suter MJ, Klebensberger J, Philipp B (2007) Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1. J Bacteriol 189:7165–7173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkenmaier A, Möller HM, Philipp B (2011) Identification of a thiolase gene essential for β-oxidation of the acyl side chain of the steroid compound cholate in Pseudomonas sp. strain Chol1. FEMS Microbiol Lett 318:123–130

    Article  CAS  PubMed  Google Scholar 

  • Brzostek A, Sliwiński T, Rumijowska-Galewicz A, Korycka-Machała M, Dziadek J (2005) Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis. Microbiology 151:2393–2402

    Article  CAS  PubMed  Google Scholar 

  • Brzostek A, Pawelczyk J, Rumijowska-Galewicz A, Dziadek B, Dziadek J (2009) Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J Bacteriol 191:6584–6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brzostek A, Rumijowska-Galewicz A, Dziadek B, Wojcik EA, Dziadek J (2013) ChoD and HsdD can be dispensable for cholesterol degradation in mycobacteria. J Steroid Biochem Mol Biol 134:1–7

    Article  CAS  PubMed  Google Scholar 

  • Cabrera JE, Pruneda Paz JL, Genti-Raimondi S (2000) Steroid-inducible transcription of the 3beta/17beta-hydroxysteroid dehydrogenase gene (3beta/17beta-hsd) in Comamonas testosteroni. J Steroid Biochem Mol Biol 73:147–152

    Article  CAS  PubMed  Google Scholar 

  • Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, Zhao R, Okamoto S, Jacobs WR Jr, Eltis LD, Mohn WW (2009) Mycobacterial cytochrome P450 125 (Cyp125) catalyzes the terminal hydroxylation of C27-steroids. J Biol Chem 284:35534–35542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capyk JK, Casabon I, Gruninger R, Strynadka NC, Eltis LD (2011) Activity of 3-Ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. J Biol Chem 286:40717–40724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casabon I, Zhu SH, Otani H, Liu J, Mohn WW, Eltis LD (2013) Regulation of the KstR2 regulon of Mycobacterium tuberculosis by a cholesterol catabolite. Mol Microbiol 89:1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Casali N, Riley LW (2007) A phylogenomic analysis of the actinomycetales mce operons. BMC Genomics 8:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Karp PD (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42(Database issue):D459–D471

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Gao X, Hong L, Ma L, Li Y (2015) Expression, purification and functional characterization of a novel 3α-hydroxysteroid dehydrogenase from Pseudomonas aeruginosa. Protein Expr Purif 115:102–108

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Wang CH, Yang FC, Ismail W, Wang PH, Shih CJ, Wu YC, Chiang YR (2016) Identification of Comamonas testosteroni as an androgen degrader in sewage. Sci Rep 6:35386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang YR, Ismail W, Müller M, Fuchs G (2007) Initial steps in the anoxic metabolism of cholesterol by the denitrifying Sterolibacterium denitrificans. J Biol Chem 282:13240–13249

    Article  CAS  PubMed  Google Scholar 

  • Chiang YR, Ismail W, Heintz D, Schaeffer C, Van Dorsselaer A, Fuchs G (2008a) Study of anoxic and oxic cholesterol metabolism by Sterolibacterium denitrificans. J Bacteriol 190:905–914

    Article  CAS  PubMed  Google Scholar 

  • Chiang YR, Ismail W, Gallien S, Heintz D, Van Dorsselaer A, Fuchs G (2008b) Cholest-4-en-3-one-delta 1-dehydrogenase, a flavoprotein catalyzing the second step in anoxic cholesterol metabolism. Appl Environ Microbiol 74:107–113

    Article  CAS  PubMed  Google Scholar 

  • Chiang YR, Fang JY, Ismail W, Wang PH (2010) Initial steps in anoxic testosterone degradation by Steroidobacter denitrificans. Microbiology 156:2253–2259

    Article  CAS  PubMed  Google Scholar 

  • Crowe A, Stogios P, casabon I, Evdokimova E, Savchenco A, Eltis L (2015) Structural and functional characterization of a ketosteroid transcriptional regulator of Mycobacterium tuberculosis. J Biol Chem 290:872–82

    Article  CAS  Google Scholar 

  • Dermer J, Fuchs G (2012) Molybdoenzyme that catalyzes the anaerobic hydroxylation of a tertiary carbon atom in the side chain of cholesterol. J Biol Chem 287:36905–36916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    Article  CAS  PubMed  Google Scholar 

  • Donova MV, Dovbnya DV, Sukhodolskaya GV, Khomutov SM, Nikolayeva VM, Kwon I, Han K (2005a) Microbial conversion of sterol-containing soybean oil production waste. J Chem Technol Biotechnol 80:55–60

    Article  CAS  Google Scholar 

  • Donova MV, Gulevskaya SA, Dovbnya DV, Puntus IF (2005b) Mycobacterium sp. mutant strain producing 9alpha-hydroxyandrostenedione from sitosterol. Appl Microbiol Biotechnol 67:671–678

    Article  CAS  PubMed  Google Scholar 

  • Dresen C, Lin LY, D’Angelo I, Tocheva EI, Strynadka N, Eltis LD (2010) A flavin-dependent monooxygenase from mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem 285:22264–22275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drzyzga O, Navarro Llorens JM, Fernández de Las Heras L, García Fernández E, Perera J (2009) Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int J Syst Evol Microbiol 59:1011–1015

    Article  CAS  PubMed  Google Scholar 

  • Drzyzga O, Fernández de las Heras L, Morales V, Navarro Llorens JM, Perera J (2011) Cholesterol degradation by Gordonia cholesterolivorans. Appl Environ Microbiol 77:4802–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrbach M (2006) Anaerobic degradation of steroid hormones by novel denitrifying bacteria. Fakultät für Mathematik, Informatik und Naturwissenschaften. Rheinisch-Westfälischen Technischen Hochschule Aachen

    Google Scholar 

  • Fahrbach M, Kuever J, Meinke R, Kämpfer P, Hollender J (2006) Denitratisoma oestradiolicum gen. nov., sp. nov., a 17beta-oestradiol-degrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 56:1547–1552

    Article  CAS  PubMed  Google Scholar 

  • Fahrbach M, Krauss M, Preiss A, Kohler HP, Hollender J (2010) Anaerobic testosterone degradation in Steroidobacter denitrificans—identification of transformation products. Environ Pollut 158:2572–2581

    Article  CAS  PubMed  Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32:688–705

    Article  CAS  Google Scholar 

  • Fernández de Las Heras L, García Fernández E, María Navarro Llorens J, Perera J, Drzyzga O (2009) Morphological, physiological, and molecular characterization of a newly isolated steroid-degrading actinomycete, identified as Rhodococcus ruber strain Chol-4. Curr Microbiol 59:548–553

    Article  PubMed  CAS  Google Scholar 

  • Fernández de Las Heras L, Mascaraque V, García Fernández E, Navarro-Llorens JM, Perera J, Drzyzga O (2011) ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp. strain CECT3014. Microbiol Res 166:403–418

    Article  PubMed  CAS  Google Scholar 

  • Frank DJ, Waddling CA, La M, Ortiz de Montellano PR (2015a) Cytochrome P450 125A4, the Third Cholesterol C-26 Hydroxylase from Mycobacterium smegmatis. Biochemistry 54:6909–6916

    Article  CAS  PubMed  Google Scholar 

  • Freier TA, Beitz DC, Li L, Hartman PA (1994) Characterization of Eubacterium coprostanoligenes sp. nov., a cholesterol-reducing anaerobe. Int J Syst Bacteriol 44:137–142

    Article  CAS  PubMed  Google Scholar 

  • Fujii K, Kikuchi S, Satomi M, Ushio-Sata N, Morita N (2002) Degradation of 17beta-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl Environ Microbiol 68:2057–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii K, Satomi M, Morita N, Motomura T, Tanaka T, Kikuchi S (2003) Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. Int J Syst Evol Microbiol 53:47–52

    Article  CAS  PubMed  Google Scholar 

  • Gagné F, Blaise C, André C (2006) Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicol Environ Saf 64:329–336

    Article  PubMed  CAS  Google Scholar 

  • Galán B, Uhía I, García-Fernández E, Martínez I, Bahíllo E, de la Fuente JL, Barredo JL, Fernández-Cabezón L, García JL (2016) Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microb Biotechnol. https://doi.org/10.1111/1751-7915.12429

    Article  PubMed  PubMed Central  Google Scholar 

  • Galli R, Braun C (2008) Integrative risk assessment of endocrine disruptors in Switzerland. Chimia 62:417–423

    Article  CAS  Google Scholar 

  • García JL, Uhía I, Galán B (2012) Catabolism and biotechnological applications of cholesterol degrading bacteria. J Microbial Biotechnol 5:679–699

    Article  CAS  Google Scholar 

  • Garcia-Fernandez E, Frank DJ, Galán B, Kells PM, Podust LM, Garcia JL, Ortiz de Montellano PR (2013) A highly conserved mycobacterial cholesterol catabolic pathway. Environ Microbiol 15:2342–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Fernández J, Galán B, Medrano FJ, García JL (2015) Characterization of the KstR2 regulator responsible of the lower cholesterol degradative pathway in Mycobacterium smegmatis. Environ Microbiol Rep 7:155–163

    Article  PubMed  CAS  Google Scholar 

  • Göhler A, Xiong G, Paulsen S, Trentmann G, Maser E (2008) Testosterone-inducible regulator is a kinase that drives steroid sensing and metabolism in Comamonas testosteroni. J Biol Chem 283:17380–17390

    Article  PubMed  CAS  Google Scholar 

  • Gong W, Xiong G, Maser E (2012a) Cloning, expression and characterization of a novel short-chain dehydrogenase/reductase (SDRx) in Comamonas testosteroni. J Steroid Biochem Mol Biol 129:15–21

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Xiong G, Maser E (2012b) Identification and characterization of the LysR-type transcriptional regulator HsdR for steroid-inducible expression of the 3α-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comamonas testosteroni. Appl Environ Microbiol 78:941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, McKinney JD, Bertozzi CR, Sassetti CM (2012) Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19:218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP et al (2011) Oxysterols direct immune cell migration via EBI2. Nature 475:524–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harder J, Probian C (1997) Anaerobic mineralization of cholesterol by a novel type of denitrifying bacterium. Arch Microbiol 167:269–274

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa S (1982) Microbial transformation of bile acids. A unified scheme for bile acid degradation, and hydroxylation of bile acids. Z Allg Mikrobiol 22:309–326

    Article  CAS  PubMed  Google Scholar 

  • Ho N, Dawes S, Crowe A, casabon I, Gao C, Kendall S, Baker E, Eltis L, Lott J (2016) The structure of the transcriptional repressor KstR in complex with CoA thioester cholesterol metabolites sheds light on the regulation of cholesterol catabolism in Mycobacterium tuberculosis. J Biol Chem 291:7256–66

    Article  CAS  Google Scholar 

  • Holert J, Alam I, Larsen M, Antunes A, Bajic VB, Stingl U, Philipp B (2013a) Genome sequence of Pseudomonas sp. strain Chol1, a model organism for the degradation of bile salts and other steroid compounds. Genome Announc 1(1). pii: e00014–12

    Google Scholar 

  • Holert J, Jagmann N, Philipp B (2013b) The essential function of genes for a hydratase and an aldehyde dehydrogenase for growth of Pseudomonas sp. strain Chol1 with the steroid compound cholate indicates an aldolytic reaction step for deacetylation of the side chain. J Bacteriol 195:3371–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holert J, Kulić Ž, Yücel O, Suvekbala V, Suter MJ, Möller HM, Philipp B (2013c) Degradation of the acyl side chain of the steroid compound cholate in Pseudomonas sp. strain Chol1 proceeds via an aldehyde intermediate. J Bacteriol 195:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holert J, Yücel O, Suvekbala V, Kulić Z, Möller H, Philipp B (2014) Evidence of distinct pathways for bacterial degradation of the steroid compound cholate suggests the potential for metabolic interactions by interspecies cross-feeding. Environ Microbiol 16:1424–1440

    Article  CAS  PubMed  Google Scholar 

  • Holert J, Yücel O, Jagmann N, Prestel A, Möller HM, Philipp B (2016) Identification of bypass reactions leading to the formation of one central steroid degradation intermediate in metabolism of different bile salts in Pseudomonas sp. strain Chol1. Environ Microbiol 18:3373–3389

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi S, Ishizuka H, Beppu T (1991) Cloning, nucleotide sequence, and transcriptional analysis of the NAD(P)-dependent cholesterol dehydrogenase gene from a Nocardia sp. and its hyperexpression in Streptomyces spp. Appl Environ Microbiol 57:1386–1393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horinouchi M, Yamamoto T, Taguchi K, Arai H, Kudo T (2001) Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. Microbiology 147:3367–3375

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi M, Hayashi T, Koshino H, Yamamoto T, Kudo T (2003a) Gene encoding the hydrolase for the product of the meta-cleavage reaction in testosterone degradation by Comamonas testosteroni. Appl Environ Microbiol 69:2139–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horinouchi M, Hayashi T, Yamamoto T, Kudo T (2003b) A new bacterial steroid degradation gene cluster in Comamonas testosteroni TA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes. Appl Environ Microbiol 69:4421–4430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horinouchi M, Hayashi T, Kudo T (2004a) The genes encoding the hydroxylase of 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione in steroid degradation in Comamonas testosteroni TA441. J Steroid Biochem Mol Biol 92:143–154

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi M, Kurita T, Yamamoto T, Hatori E, Hayashi T, Kudo T (2004b) Steroid degradation gene cluster of Comamonas testosteroni consisting of 18 putative genes from meta-cleavage enzyme gene tesB to regulator gene tesR. Biochem Biophys Res Commun 324:597–604

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi M, Hayashi T, Koshino H, Kurita T, Kudo T (2005) Identification of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, 4-hydroxy-2-oxohexanoic acid, and 2-hydroxyhexa-2,4-dienoic acid and related enzymes involved in testosterone degradation in Comamonas testosteroni TA441. Appl Environ Microbiol 71:5275–5281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horinouchi M, Hayashi T, Koshino H, Kudo T (2006) ORF18-disrupted mutant of Comamonas testosteroni TA441 accumulates significant amounts of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and its derivatives after incubation with steroids. J Steroid Biochem Mol Biol 101:78–84

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi M, Hayashi T, Koshino H, Malon M, Yamamoto T, Kudo T (2008) Identification of genes involved in inversion of stereochemistry of a C-12 hydroxyl group in the catabolism of cholic acid by Comamonas testosteroni TA441. J Bacteriol 190:5545–5554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horinouchi M, Kurita T, Hayashi T, Kudo T (2010) Steroid degradation genes in Comamonas testosteroni TA441: isolation of genes encoding a Δ4(5)-isomerase and 3α- and 3β-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot. J Steroid Biochem Mol Biol 122:253–263

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi M, Hayashi T, Kudo T (2012) Steroid degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 129:4–14

    Article  CAS  PubMed  Google Scholar 

  • Hu A, He J, Chu KH, Yu CP (2011) Genome sequence of the 17β-estradiol-utilizing bacterium Sphingomonas strain KC8. J Bacteriol 193:4266–4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isabelle M, Villemur R, Juteau P, Lépine F (2011) Isolation of estrogen-degrading bacteria from an activated sludge bioreactor treating swine waste, including a strain that converts estrone to β-estradiol. Can J Microbiol 57:559–568

    Article  PubMed  Google Scholar 

  • Ishizaki T, Hirayama N, Shinkawa H, Nimi O, Murooka Y (1989) Nucleotide sequence of the gene for cholesterol oxidase from a Streptomyces sp. J Bacteriol 171:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail W, Chiang YR (2011) Oxic and anoxic metabolism of steroids by bacteria. Bioremed Biodegrad S1:001

    Google Scholar 

  • Ji W, Chen Y, Zhang H, Zhang X, Li Z, Yu Y (2014) Cloning, expression and characterization of a putative 7alpha-hydroxysteroid dehydrogenase in Comamonas testosteroni. Microbiol Res 169:148–154

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Yang J, Chen J (2010) Isolation and characteristics of 17beta-estradiol-degrading Bacillus spp. strains from activated sludge. Biodegradation 21:729–736

    Article  CAS  PubMed  Google Scholar 

  • Joshi SM, Pandey AK, Capite N, Fortune SM, Rubin EJ, Sassetti CM (2006) Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci 103:11760–11765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke J, Zhuang W, Gin KY, Reinhard M, Hoon LT, Tay JH (2007) Characterization of estrogen-degrading bacteria isolated from an artificial sandy aquifer with ultrafiltered secondary effluent as the medium. Appl Microbiol Biotechnol 75:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS, Stoker NG (2007) A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 65:684–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendall SL, Burgess P, Balhana R, Withers M, Ten Bokum A, Lott JS, Gao C, Uhia-Castro I, Stoker NG (2010) Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2. Microbiology 156:1362–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieslich K (1985) Microbial side-chain degradation of sterols. J Basic Microbiol 7:461–474

    Article  Google Scholar 

  • Klepp LI, Forrellad MA, Osella AV, Blanco FC, Stella EJ, Bianco MV, Santangelo ML, Kurisu F, Ogura M, Saitoh S, Yamazoe A, Yagi O (2010) Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp. J Biosci Bioeng 109:576–582

    Article  CAS  Google Scholar 

  • Klepp LI, Forrellad MA, Osella AV, Blanco FC, Stella EJ, Bianco MV, Santangelo Mde L, Sassetti C, Jackson M, Cataldi AA, Bigi F, Morbidoni HR (2012) Impact of the deletion of the six mce operons in Mycobacterium smegmatis. Microbes Infect 14:590–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurisu F, Zang K, Kasuga I, Furumai H, Yagi O (2015) Identification of estrone-degrading Betaproteobacteria in activated sludge by microautoradiography fluorescent in situ hybridization. Lett Appl Microbiol 61:28–35

    Article  CAS  PubMed  Google Scholar 

  • Lack N, Lowe ED, Liu J, Eltis LD, Noble ME, Sim E, Westwood IM (2008) Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:2–7

    Article  CAS  PubMed  Google Scholar 

  • Lack NA, Yam KC, Lowe ED, Horsman GP, Owen RL, Sim E, Eltis LD (2010) Characterization of a carbon-carbon hydrolase from Mycobacterium tuberculosis involved in cholesterol metabolism. J Biol Chem 285:434–443

    Article  CAS  PubMed  Google Scholar 

  • Leu YL, Wang PH, Shiao MS, Ismail W, Chiang YR (2011) A novel testosterone catabolic pathway in bacteria. J Bacteriol 193:4447–4455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Vrielink A, Brick P, Blow DM (1993) Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases. Biochemistry 32:11507–11515

    Article  CAS  PubMed  Google Scholar 

  • Li L, Freier TA, Hartman PA, Young JW, Beitz DC (1995) A resting-cell assay for cholesterol reductase activity in Eubacterium coprostanoligenes ATCC 51222. Appl Microbiol Biotechnol 43:887–892

    Article  CAS  Google Scholar 

  • Li Z, Nandakumar R, Madayiputhiya N, Li X (2012) Proteomic analysis of 17β-estradiol degradation by Stenotrophomonas maltophilia. Environ Sci Technol 46:5947–5955

    Article  CAS  PubMed  Google Scholar 

  • Li M, Xiong G, Maser E (2013) A novel transcriptional repressor PhaR for the steroid-inducible expression of the 3,17β-hydroxysteroid dehydrogenase gene in Comamonas testosteroni ATCC11996. Chem Biol Interact 202:116–125

    Article  CAS  PubMed  Google Scholar 

  • Liang R, Liu H, Tao F, Liu Y, Ma C, Liu X, Liu J (2012) Genome sequence of Pseudomonas putida strain SJTE-1, a bacterium capable of degrading estrogens and persistent organic pollutants. J Bacteriol 194:4781–4782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CW, Wang PH, Ismail W, Tsai YW, El Nayal A, Yang CY, Yang FC, Wang CH, Chiang YR (2015) Substrate uptake and subcellular compartmentation of anoxic cholesterol catabolism in Sterolibacterium denitrificans. J Biol Chem 290:1155–1169

    Article  CAS  PubMed  Google Scholar 

  • Linares M, Pruneda-Paz JL, Reyna L, Genti-Raimondi S (2008) Regulation of testosterone degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 112:145–150

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Yang XV, Wu J, Kuei C, Mani NS, Zhang L, Yu J, Sutton SW, Qin N, Banie H, Karlsson L, Sun S, Lovenberg TW (2011) Oxysterols direct B-cell migration through EBI2. Nature 475:519–523

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Qin D, Sun Q, Zhang F, Liu H, Yu CP (2016) Removal of environmental estrogens by bacterial cell immobilization technique. Chemosphere 144:607–614

    Article  CAS  PubMed  Google Scholar 

  • Machang’u RS, Prescott JF (1991) Purification and properties of cholesterol oxidase and choline phosphohydrolase from Rhodococcus equi. Can J Vet Res 55:332–340

    PubMed  PubMed Central  Google Scholar 

  • Mallonee DH, Hylemon PB (1996) Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J Bacteriol 178:7053–7058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsheck WJ, Kraychy S, Muir RD (1972) Microbial degradation of sterols. Appl Microbiol 23:72–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maser E, Xiong G, Grimm C, Ficner R, Reuter K (2001) 3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation. Chem Biol Interact 130-132:707–722

    Article  CAS  PubMed  Google Scholar 

  • McLean KJ, Lafite P, Levy C, Cheesman MR, Mast N, Pikuleva IA, Leys D, Munro AW (2009) The structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection. J Biol Chem 284:35524–35533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino E, Barrientos A, Rodríguez J, Naharro G, Luengo JM, Olivera ER (2013) Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Appl Microbiol Biotechnol 97:891–904

    Article  CAS  PubMed  Google Scholar 

  • Möbus E, Maser E (1998) Molecular cloning, overexpression, and characterization of steroid-inducible 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. A novel member of the short-chain dehydrogenase/reductase superfamily. J Biol Chem 273:30888–30896

    Article  PubMed  Google Scholar 

  • Möbus E, Jahn M, Schmid R, Jahn D, Maser E (1997) Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni. J Bacteriol 179:5951–5955

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohn WW, van der Geize R, Stewart GR, Okamoto S, Liu J, Dijkhuizen L, Eltis LD (2008) The actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem 283:35368–35374

    Article  CAS  PubMed  Google Scholar 

  • Mohn WW, Wilbrink MH, Casabon I, Stewart GR, Liu J, van der Geize R, Eltis LD (2012) Gene cluster encoding cholate catabolism in Rhodococcus spp. J Bacteriol 194:6712–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller M, Patureau D, Godon JJ, Delgenès JP, Hernandez-Raquet G (2010) Molecular and kinetic characterization of mixed cultures degrading natural and synthetic estrogens. Appl Microbiol Biotechnol 85:691–701

    Article  CAS  PubMed  Google Scholar 

  • Navas J, González-Zorn B, Ladrón N, Garrido P, Vázquez-Boland JA (2001) Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. J Bacteriol 183:4796–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesbitt NM, Yang X, Fontán P, Kolesnikova I, Smith I, Sampson NS, Dubnau E (2010) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78:275–282

    Article  CAS  PubMed  Google Scholar 

  • Oppermann UC, Maser E (1996) Characterization of a 3 alpha-hydroxysteroid dehydrogenase/carbonyl reductase from the gram-negative bacterium Comamonas testosteroni. Eur J Biochem 241:744–749

    Article  CAS  PubMed  Google Scholar 

  • Ouellet H, Johnston JB, Chow E, Kells PM, Burlingame AL, Cox JS, Podust ML, Ortiz de Montellano PR (2010) Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. Mol Microbiol 77(3):730–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan T, Huang P, Xiong G, Maser E (2015) Isolation and identification of a repressor TetR for 3,17β-HSD expressional regulation in Comamonas testosteroni. Chem Biol Interact 234:205–212

    Article  CAS  PubMed  Google Scholar 

  • Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels B, Wille K, Noppe H, De Brabander H, Van de Wiele T, Verstraete W, Boon N (2008) 17alpha-ethinylestradiol cometabolism by bacteria degrading estrone, 17beta-estradiol and estriol. Biodegradation 19:683–693

    Article  CAS  PubMed  Google Scholar 

  • Penfield JS, Worrall LJ, Strynadka NC, Eltis LD (2014) Substrate specificities and conformational flexibility of 3-ketosteroid 9α-hydroxylases. J Biol Chem 289:25523–25536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philipp B (2011) Bacterial degradation of bile salts. Appl Microbiol Biotechnol 89:903–915

    Article  CAS  PubMed  Google Scholar 

  • Philipp B, Erdbrink H, Suter MJ, Schink B (2006) Degradation of and sensitivity to cholate in Pseudomonas sp. strain Chol1. Arch Microbiol 185:192–201

    Article  CAS  PubMed  Google Scholar 

  • Plésiat P, Nikaido H (1992) Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol 6:1323–1333

    Article  PubMed  Google Scholar 

  • Pruneda-Paz JL, Linares M, Cabrera JE, Genti-Raimondi S (2004a) Identification of a novel steroid inducible gene associated with the beta hsd locus of Comamonas testosteroni. J Steroid Biochem Mol Biol 88:91–100

    Article  CAS  PubMed  Google Scholar 

  • Pruneda-Paz JL, Linares M, Cabrera JE, Genti-Raimondi S (2004b) TeiR, a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni. J Bacteriol 186:1430–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro AR, Carvalho MF, Afonso CM, Tiritan ME, Castro PM (2010) Microbial degradation of 17beta -estradiol and 17alpha-ethinylestradiol followed by a validated HPLC-DAD method. J Environ Sci Health B 45:265–273

    Article  CAS  PubMed  Google Scholar 

  • Ridlon JM, Kang OJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  PubMed  Google Scholar 

  • Roh H, Chu KH (2010) A 17beta-estradiol-utilizing bacterium, Sphingomonas strain KC8: part I characterization and abundance in wastewater treatment plants. Environ Sci Technol 44:4943–4950

    Article  CAS  PubMed  Google Scholar 

  • Rösch V, Denger K, Schleheck D, Smits TH, Cook AM (2008) Different bacterial strategies to degrade taurocholate. Arch Microbiol 190:11–18

    Article  PubMed  CAS  Google Scholar 

  • Rosloniec KZ, Wilbrink M, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, Dijkhuizen L, Eltis LD (2009) Cytochrome P450 125 (CYP125) catalyzes C26-hydroxylation to initiate sterol side chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 74:1031–1043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sassetti C, Jackson M, Cataldi AA, Bigi F, Morbidoni HR (2012) Impact of the deletion of the six mce operons in Mycobacterium smegmatis. Microbes Infect 14:590–599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaefer C, Lu R, Nesbitt NM, Schiebel J, Sampson NS, Kisker C (2015) FadA5 a thiolase from Mycobacterium tuberculosis – a unique steroid-binding pocket reveals the potential for drug development against tuberculosis. Structure 23:21–33

    Article  CAS  PubMed  Google Scholar 

  • Shi JH, Suzuki Y, Nakai S, Hosomi M (2004) Microbial degradation of estrogens using activated sludge and night soil-composting microorganisms. Water Sci Technol 50:153–159

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Wang L, Rousseau DP, Lens PN (2010) Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems. Environ Sci Pollut Res Int 17:824–833

    Article  CAS  PubMed  Google Scholar 

  • Skowasch D, Möbus E, Maser E (2002) Identification of a novel Comamonas testosteroni gene encoding a steroid-inducible extradiol dioxygenase. Biochem Biophys Res Commun 294:560–566

    Article  CAS  PubMed  Google Scholar 

  • Somalinga V, Mohn WW (2013) Rhodococcus jostii porin A (RjpA) functions in cholate uptake. Appl Environ Microbiol 79:6191–6193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M (2008) Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis 88:526–544

    Article  CAS  PubMed  Google Scholar 

  • Swain K, Casabon I, Eltis LD, Mohn WW (2012) Two transporters essential for reassimilation of novel cholate metabolites by Rhodococcus jostii RHA1. J Bacteriol 194:6720–6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarlera S, Denner EB (2003) Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the beta-Proteobacteria. Int J Syst Evol Microbiol 53:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Thomas ST, Sampson NS (2013) Mycobacterium tuberculosis utilizes a unique heterotetrameric structure for dehydrogenation of the cholesterol side chain. Biochemistry 52:2895–2904

    Article  CAS  PubMed  Google Scholar 

  • Thomas ST, Vander Ven BC, Sherman DR, Russell DG, Sampson NS (2011) Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J Biol Chem 286:43668–43678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhia I, Galán B, Medrano FJ, García JL (2011a) Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway in Mycobacterium smegmatis. Microbiology 157:2670–2680

    Article  CAS  PubMed  Google Scholar 

  • Uhia I, Galán B, Morales V, García JL (2011b) Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc2155. Environ Microbiol 13:943–959

    Article  CAS  PubMed  Google Scholar 

  • Uhia I, Galán B, Kendall SL, Stoker NG, García JL (2012) Cholesterol metabolism in Mycobacterium smegmatis. Environ Microbiol Rep 4:168–182

    Article  CAS  PubMed  Google Scholar 

  • Van der Geize R, Hessels GI, van Gerwen R, Vrijbloed JW, van Der Meijden P, Dijkhuizen L (2000) Targeted disruption of the kstD gene encoding a 3-kestosteroid delta(1)-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1. Appl Environ Microbiol 66:2029–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L (2001) Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Delta1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol Lett 205:197–202

    Article  CAS  PubMed  Google Scholar 

  • Van der Geize R, Hessels GI, Dijkhuizen L (2002a) Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Δ1-dehydrogenase isoenzyme. Microbiology 148:3285–3292

    Article  CAS  PubMed  Google Scholar 

  • Van der Geize R, Hessels GI, Gerwen RV, Meijden PVD, Dijkhuizen L (2002b) Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol 45:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104:1947–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Geize R, Hessels GI, Nienhuis-Kuiper M, Dijkhuizen L (2008) Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9alpha-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB. Appl Environ Microbiol 74:7197–7203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Geize R, Grommen AW, Hessels GI, Jacobs AA, Dijkhuizen L (2011) The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog 7:e1002181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villemur R, Dos Santos SC, Ouellette J, Juteau P, Lépine F, Déziel E (2013) Biodegradation of endocrine disruptors in solid-liquid two-phase partitioning systems by enrichment cultures. Appl Environ Microbiol 79:4701–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang PH, Lee TH, Ismail W, Tsai CY, Lin CW, Tsai YW, Chiang YR (2013) An oxygenase-independent cholesterol catabolic pathway operates under oxic conditions. PLoS One 8:e66675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang PH, Yu CP, Lee TH, Lin CW, Ismail W, Wey SP, Kuo AT, Chiang YR (2014) Anoxic androgen degradation by the denitrifying bacterium Sterolibacterium denitrificans via the 2,3-seco pathway. Appl Environ Microbiol 80:3442–3452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weber S, Leuschner P, Kämpfer P, Dott W, Hollender J (2005) Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Appl Microbiol Biotechnol 67:106–112

    Article  CAS  PubMed  Google Scholar 

  • Wilbrink MH, Petrusma M, Dijkhuizen L, van der Geize R (2011) FadD19 of Rhodococcus rhodochrous DSM43269, a steroid-coenzyme A ligase essential for degradation of C-24 branched sterol side chains. Appl Environ Microbiol 77:4455–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wipperman MF, Yang M, Thomas ST, Sampson NS (2013) Shrinking the FadE proteome of Mycobacterium tuberculosis: insights into cholesterol metabolism through identification of an α2β2 heterotetrameric acyl coenzyme A dehydrogenase family. J Bacteriol 195:4331–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Huang P, Xiong G, Maser E (2015) Identification and isolation of a regulator protein for 3,17β-HSD expressional regulation in Comamonas testosteroni. Chem Biol Interact 234:197–204

    Article  CAS  PubMed  Google Scholar 

  • Wülfing C, Plückthun A (1994) Correctly folded T-cell receptor fragments in the periplasm of Escherichia coli. Influence of folding catalysts. J Mol Biol 242:655–669

    Article  PubMed  Google Scholar 

  • Xiong G, Maser E (2001) Regulation of the steroid-inducible 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comamonas testosteroni. J Biol Chem 276:9961–9970

    Article  CAS  PubMed  Google Scholar 

  • Xiong G, Martin H, Blum A, Schäfers C, Maser E (2001) A model on the regulation of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase expression in Comamonas testosteroni. Chem Biol Interact 130–132:723–736

    Article  PubMed  Google Scholar 

  • Xiong G, Martin HJ, Maser E (2003a) Characterization and recombinant expression of the translational repressor RepB of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase in Comamonas testosteroni. Chem Biol Interact 143–144:425–433

    Article  PubMed  CAS  Google Scholar 

  • Xiong G, Martin HJ, Maser E (2003b) Identification and characterization of a novel translational repressor of the steroid-inducible 3 alpha-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comamonas testosteroni. J Biol Chem 278:47400–47407

    Article  CAS  PubMed  Google Scholar 

  • Xu LQ, Liu YJ, Yao K, Liu HH, Tao XY, Wang FQ, Wei DZ (2016) Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Sci Rep 6:21928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yam KC, D’Angelo I, Kalscheuer R, Zhu H, Wang JX, Snieckus V, Ly LH, Converse PJ, Jacobs WR Jr, Strynadka N, Eltis LD (2009) Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 5:e1000344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Dubnau E, Smith I, Sampson NS (2007) Rv1106c from Mycobacterium tuberculosis is a 3β-hydroxysteroid dehydrogenase. Biochemistry 46:9058–9067

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Guja KE, Thomas ST, Garcia-Diaz M, Sampson NS (2014) A distinct MaoC-like enoyl-CoA hydratase architecture mediates cholesterol catabolism in Mycobacterium tuberculosis. ACS Chem Biol 9:2632–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Lu R, Guja KE, Wipperman MF, St Clair JR, Bonds AC, Garcia-Diaz M, Sampson NS (2015) Unraveling cholesterol catabolism in Mycobacterium tuberculosis: ChsE4-ChsE5 α2β2 Acyl-CoA dehydrogenase initiates β-oxidation of 3-oxo-cholest-4-en-26-oyl CoA (2015). ACS Infect Dis 1:100–125

    Google Scholar 

  • Yeh CH, Kuo YS, Chang CM, Liu WH, Sheu ML, Meng M (2014) Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid and 1,4-androstadiene-3,17-dione. Microb Cell Fact 13:130

    PubMed  PubMed Central  Google Scholar 

  • Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H, Makino T, Kimura K, Saino H, Sawada H, Omura H (2004) Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 70:5283–5289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CP, Roh H, Chu KH (2007) 17beta-estradiol-degrading bacteria isolated from activated sludge. Environ Sci Technol 41:486–492

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Liu C, Wang B, Li Y, Zhang H (2015) Characterization of 3,17β-hydroxysteroid dehydrogenase in Comamonas testosteroni. Chem Biol Interact 234:221–228

    Article  CAS  PubMed  Google Scholar 

  • Yücel O, Drees S, Jagmann N, Patschkowski T, Philipp B (2016) An unexplored pathway for degradation of cholate requires a 7α-hydroxysteroid dehydratase and contributes to a broad metabolic repertoire for the utilization of bile salts in Novosphingobium sp. strain Chol11. Environ Microbiol. https://doi.org/10.1111/1462-2920.13534

    Article  PubMed  Google Scholar 

  • Zang K, Kurisu F, Kasuga I, Furumai H, Yagi O (2008) Analysis of the phylogenetic diversity of estrone-degrading bacteria in activated sewage sludge using microautoradiography-fluorescence in situ hybridization. Syst Appl Microbiol 31:206–214

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Xiong G, Maser E (2011) Characterization of the steroid degrading bacterium S19-1 from the Baltic Sea at Kiel, Germany. Chem Biol Interact 191:83–88

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Xiong G, Maser E (2013) Analysis and characterization of eight estradiol inducible genes and a strong promoter from the steroid degrading marine bacterial strain S19-1. Chem Biol Interact 202:159–167

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ji Y, Wang Y, Zhang X, Yu Y (2015) Cloning and characterization of a novel β-ketoacyl-ACP reductase from Comamonas testosteroni. Chem Biol Interact 234:213–220

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Galán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Galán, B., García-Fernández, J., Felpeto-Santero, C., Fernández-Cabezón, L., García, J.L. (2019). Bacterial Metabolism of Steroids. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50418-6_43

Download citation

Publish with us

Policies and ethics