Skip to main content

Genetic Features and Regulation of n-Alkane Metabolism in Yeasts

  • Reference work entry
  • First Online:
Aerobic Utilization of Hydrocarbons, Oils, and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 1395 Accesses

Abstract

The yeasts Candida tropicalis, Candida maltosa, and Yarrowia lipolytica have an excellent ability to use n-alkanes as the sole carbon and energy source. Here, we summarize the current knowledge of the genetic features and regulation of n-alkane metabolism in these yeasts. The transcription of genes encoding the CYP52-family cytochromes P450 that catalyze the initial hydroxylation of n-alkanes has been shown to be activated when these yeasts are cultured in the presence of n-alkanes. In Y. lipolytica, the transcription of ALK1, the gene encoding P450, is activated by a complex composed of two basic helix-loop-helix transcription activators Yas1p and Yas2p through a promoter element ARE1. This transcription is regulated by an Opi1-family transcriptional repressor Yas3p. In the absence of n-alkanes, Yas3p binds to Yas2p in the nucleus thereby repressing the transcription of ALK1. However, in the presence of n-alkanes, Yas3p is sequestered to the endoplasmic reticulum to derepress the transcription of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Non-conventional yeast in biotechnology. A handbook. Springer, Berlin, pp 313–388

    Chapter  Google Scholar 

  • Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237

    Article  CAS  PubMed  Google Scholar 

  • Bethea EK, Carver BJ, Montedonico AE, Reynolds TB (2010) The inositol regulon controls viability in Candida glabrata. Microbiology 156:452–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S et al (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YL, de Bernardis F, Yu SJ, Sandini S, Kauffman S et al (2015) Candida albicans OPI1 regulates filamentous growth and virulence in vaginal infections, but not inositol biosynthesis. PLoS One 10:e0116974

    Article  PubMed  PubMed Central  Google Scholar 

  • Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254–299

    Article  CAS  PubMed  Google Scholar 

  • Craft DL, Madduri KM, Eshoo M, Wilson CR (2003) Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to α,ω-dicarboxylic acids. Appl Environ Microbiol 69:5983–5991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S et al (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  • Endoh-Yamagami S, Hirakawa K, Morioka D, Fukuda R, Ohta A (2007) Basic helix-loop-helix transcription factor heterocomplex of Yas1p and Yas2p regulates cytochrome P450 expression in response to alkanes in the yeast Yarrowia lipolytica. Eukaryot Cell 6:734–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federovitch CM, Ron D, Hampton RY (2005) The dynamic ER: experimental approaches and current questions. Curr Opin Cell Biol 17:409–414

    Article  CAS  PubMed  Google Scholar 

  • Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S et al (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Article  CAS  PubMed  Google Scholar 

  • Fukuda R (2013) Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica. Biosci Biotechnol Biochem 77:1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Fukuda R, Ohta A (2013) Utilization of hydrophobic substrate by Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica genetics, genomics, and physiology. Springer, Heidelberg, pp 111–119

    Chapter  Google Scholar 

  • Gurvitz A, Rottensteiner H (2006) The biochemistry of oleate induction: transcriptional upregulation and peroxisome proliferation. Biochim Biophys Acta 1763:1392–1402

    Article  CAS  PubMed  Google Scholar 

  • Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyken WT, Repenning A, Kumme J, Schuller HJ (2005) Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor. Mol Microbiol 56:696–707

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa K, Kobayashi S, Inoue T, Endoh-Yamagami S, Fukuda R, Ohta A (2009) Yas3p, an Opi1 family transcription factor, regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J Biol Chem 284:7126–7137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida T, Ohta A, Takagi M (1998) Cloning and characterization of an n-alkane-inducible cytochrome P450 gene essential for n-decane assimilation by Yarrowia lipolytica. Yeast 14:1387–1397

    Article  CAS  PubMed  Google Scholar 

  • Iida T, Sumita T, Ohta A, Takagi M (2000) The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R (2014) Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica. J Biol Chem 289:33275–33286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R (2015) Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica. FEMS Yeast Res 15:fov014

    Article  PubMed  Google Scholar 

  • Iwama R, Kobayashi S, Ishimaru C, Ohta A, Horiuchi H, Fukuda R (2016) Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genet Biol 91:43–54

    Article  CAS  PubMed  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S et al (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayikci Ö, Nielsen J (2015) Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res 15:fov068

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Hirakawa K, Fukuda R, Ohta A (2008) Disruption of the SCS2 ortholog in the alkane-assimilating yeast Yarrowia lipolytica impairs its growth on n-decane, but does not impair inositol prototrophy. Biosci Biotechnol Biochem 72:2219–2223

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Hirakawa K, Horiuchi H, Fukuda R, Ohta A (2013) Phosphatidic acid and phosphoinositides facilitate liposome association of Yas3p and potentiate derepression of ARE1 (alkane-responsive element one)-mediated transcription control. Fungal Genet Biol 61:100–110

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Tezaki S, Horiuchi H, Fukuda R, Ohta A (2015) Acidic phospholipid-independent interaction of Yas3p, an Opi1-family transcriptional repressor of Yarrowia lipolytica, with the endoplasmic reticulum. Yeast 32:691–701

    Article  CAS  PubMed  Google Scholar 

  • Lebeault JM, Lode ET, Coon MJ (1971) Fatty acid and hydrocarbon hydroxylation in yeast: role of cytochrome P-450 in Candida tropicalis. Biochem Biophys Res Commun 42:413–419

    Article  CAS  PubMed  Google Scholar 

  • Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT et al (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–1647

    Article  CAS  PubMed  Google Scholar 

  • Massey SE, Moura G, Beltrão P, Almeida R, Garey JR et al (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13:544–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauersberger S, Kärgel E, Matyashova RNM, Mueller HG (1987) Subcellular organization of alkane oxidation in the yeast Candida maltosa. J Basic Microbiol 27:565–582

    Article  CAS  Google Scholar 

  • Mauersberger S, Ohkuma M, Schunck WH, Takagi M (1996) Candida maltosa. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin, pp 411–580

    Chapter  Google Scholar 

  • Mori K, Iwama R, Kobayashi S, Horiuchi H, Fukuda R, Ohta A (2013) Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica. FEMS Yeast Res 13:233–240

    Article  CAS  PubMed  Google Scholar 

  • Murre C, Bain G, van Dijk MA, Engel I, Furnari BA et al (1994) Structure and function of helix-loop-helix proteins. Biochim Biophys Acta 1218:129–135

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR (2009) The cytochrome p450 homepage. Hum Genomics 4:59–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicaud JM (2012) Yarrowia lipolytica. Yeast 29:409–418

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Tanimoto T, Yano K, Takagi M (1991) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: molecular cloning and nucleotide sequence of the two tandemly arranged genes. DNA Cell Biol 10:271–282

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Muraoka S, Tanimoto T, Fujii M, Ohta A, Takagi M (1995a) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: identification and characterization of eight members. DNA Cell Biol 14:163–173

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Park SM, Zimmer T, Menzel R, Vogel F et al (1995b) Proliferation of intracellular membrane structures upon homologous overproduction of cytochrome P-450 in Candida maltosa. Biochim Biophys Acta 1236:163–169

    Article  PubMed  Google Scholar 

  • Osumi M, Miwa N, Teranishi Y, Tanaka A, Fukui S (1974) Ultrastructure of Candida yeasts grown on n-alkanes. Appearance of microbodies and its relationship to high catalase activity. Arch Microbiol 99:181–201

    Article  CAS  PubMed  Google Scholar 

  • Rodicio R, López ML, Cuadrado S, Cid AF, Redruello B et al (2008) Differential control of isocitrate lyase gene transcription by non-fermentable carbon sources in the milk yeast Kluyveromyces lactis. FEBS Lett 582:549–557

    Article  CAS  PubMed  Google Scholar 

  • Sanglard D, Chen C, Loper JC (1987) Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis. Biochem Biophys Res Commun 144:251–257

    Article  CAS  PubMed  Google Scholar 

  • Schunck WH, Vogel F, Gross B, Kärgel E, Mauersberger S et al (1991) Comparison of two cytochromes P-450 from Candida maltosa: primary structures, substrate specificities and effects of their expression in Saccharomyces cerevisiae on the proliferation of the endoplasmic reticulum. Eur J Cell Biol 55:336–345

    CAS  PubMed  Google Scholar 

  • Seghezzi W, Sanglard D, Fiechter A (1991) Characterization of a second alkane-inducible cytochrome P450-encoding gene, CYP52A2, from Candida tropicalis. Gene 106:51–60

    Article  CAS  PubMed  Google Scholar 

  • Seghezzi W, Meili C, Ruffiner R, Kuenzi R, Sanglard D, Fiechter A (1992) Identification and characterization of additional members of the cytochrome P450 multigene family CYP52 of Candida tropicalis. DNA Cell Biol 11:767–780

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama H, Ohkuma M, Masuda Y, Park SM, Ohta A, Takagi M (1995) In vivo evidence for non-universal usage of the codon CUG in Candida maltosa. Yeast 11:43–52

    Article  CAS  PubMed  Google Scholar 

  • Sumita T, Iida T, Yamagami S, Horiuchi H, Takagi M, Ohta A (2002) YlALK1 encoding the cytochrome P450ALK1 in Yarrowia lipolytica is transcriptionally induced by n-alkane through two distinct cis-elements on its promoter. Biochem Biophys Res Commun 294:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Takai H, Iwama R, Kobayashi S, Horiuchi H, Fukuda R, Ohta A (2012) Construction and characterization of a Yarrowia lipolytica mutant lacking genes encoding cytochromes P450 subfamily 52. Fungal Genet Biol 49:58–64

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Fukui S (1989) Metabolism of n-alkanes. In: The yeast. Academic, London, pp 261–287

    Google Scholar 

  • Tenagy PJS, Iwama R, Kobayashi S, Ohta A et al (2015) Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica. FEMS Yeast Res 15:fov031

    Article  CAS  PubMed  Google Scholar 

  • Ueda T, Suzuki T, Yokogawa T, Nishikawa K, Watanabe K (1994) Unique structure of new serine tRNAs responsible for decoding leucine codon CUG in various Candida species and their putative ancestral tRNA genes. Biochimie 76:1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Van Bogaert IN, De Mey M, Develter D, Soetaert W, Vandamme EJ (2009) Importance of the cytochrome P450 monooxygenase CYP52 family for the sophorolipid-producing yeast Candida bombicola. FEMS Yeast Res 9:87–94

    Article  PubMed  Google Scholar 

  • Vogel F, Gengnagel C, Kärgel E, Müller HG, Schunck WH (1992) Immunocytochemical localization of alkane-inducible cytochrome P-450 and its NADPH-dependent reductase in the yeast Candida maltosa. Eur J Cell Biol 57:285–291

    CAS  PubMed  Google Scholar 

  • Yamagami S, Iida T, Nagata Y, Ohta A, Takagi M (2001) Isolation and characterization of acetoacetyl-CoA thiolase gene essential for n-decane assimilation in yeast Yarrowia lipolytica. Biochem Biophys Res Commun 282:832–838

    Article  CAS  PubMed  Google Scholar 

  • Yamagami S, Morioka D, Fukuda R, Ohta A (2004) A basic helix-loop-helix transcription factor essential for cytochrome P450 induction in response to alkanes in yeast Yarrowia lipolytica. J Biol Chem 279:22183–22189

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryouichi Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fukuda, R., Ohta, A. (2019). Genetic Features and Regulation of n-Alkane Metabolism in Yeasts. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50418-6_24

Download citation

Publish with us

Policies and ethics