Skip to main content

Waste-Porous-Based Materials as Supports of TiO2 Photocatalytic Coatings for Environmental Applications

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Porous materials obtained through recycling glass-waste or volcanic materials such as foams and amorphous perlite granules could be used as excellent inorganic supports for catalytic coatings. These materials have good water absorption capacity that makes them good supports for catalytic and photocatalytic coatings with surface roughness. In addition to hygroscopic characteristics, their low density (approximately 0.41–0.44 g cm−3) allows floating on water (lightweight materials). These recycled materials present a chemical composition that is approximately 74% SiO2, 15% Al2O3, and 11% alkaline oxides and alkaline earth oxides that provide a negligible contribution for photocatalytic or catalytic applications. Perlite is an expanded material extensively used in aqueous photocatalytic degradations of dyes and organic contaminants and gas-phase degradation of VOCs like ethylene benzene coupled with biofilters, achieving degradation in 3 h. Waste-glass foams present activity for green tide annihilation and solar degradation of dyes using natural solar irradiation. Both systems present negligible lixiviation and good mechanical stability during photocatalytic performance. In the present work, coatings were obtained by several synthesis methods such as sonochemical deposition or acid impregnation process using nanocrystalline-doped sol-gel TiO2 or commercial TiO2. The physiochemical characterizations by HRTEM, XRD, UV-vis-DRS, and Raman or FTIR spectroscopies are discussed and correlated with environmental applications to obtain a better understanding of these novel ecomaterial systems.

The practical active systems are a realistic strategy to scale up the systems to possible industrial applications and solve the emerging environmental pollution problems of industrialized cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

4 CP:

4-Chlorophenol

AC:

Activated carbon

AO7:

Acid orange 7

BET:

Brunauer–Emmett–Teller

CTAB:

Cetyl trimethylammonium bromide

CVD:

Chemical vapor deposition

DCA:

Dichloroacetate

DRS:

Diffuse reflectance spectroscopy

EB:

Ethylbenzene

EC:

Elimination capacity

EDS:

Energy-dispersive X-ray spectroscopy

EP:

Expanded perlite

FG:

Foamed glass

FTIR:

Fourier transform infrared

FWG:

Foamed waste glass

FWGS:

Foamed waste-glass strips

GO:

Graphene oxide

HRTEM:

High-resolution transmission electron microscopy

LBD:

Loose bulk density

Nf:

Nafion

NO:

Nitric oxide

POSS:

Polyhedral oligomeric silsesquioxane

PVA:

Polyvinyl alcohol

RhB:

Rhodamine B

SEM:

Scanning electron microscopy/microscope

SMX:

Sulfamethoxazole

TiO2 :

Titanium dioxide

TMA:

Tetramethylammonium

UV:

Ultraviolet

UV-A:

Ultraviolet radiation A

WCF:

Waste ceramic foams

WG:

Waste glass

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. Qian X, Ren M, Yue D, Zhu Y, Han Y, Bian Z, Zhao Y (2017) Mesoporous TiO2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. Appl Catal B 212:1–6

    Article  Google Scholar 

  2. Fu G, Vary PS, Lin CT (1997) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  Google Scholar 

  3. Hochmannova L, Vytrasova J (2010) Photocatalytic and antimicrobial effects of interior paints. Prog Org Coat 67:1–5

    Article  Google Scholar 

  4. Xie S, Ji Z, Yang Y, Hou G, Wang J (2016) Electromagnetic wave absorption enhancement of carbon black/gypsum based composites filled with expanded perlite. Compos Part B-Eng 106:10–19

    Article  Google Scholar 

  5. Lebullenger R, Chenu S, Rocherullé J, Merdrignac-Conanec O, Cheviré F, Tessier F, Bouzaza A, Brosillon S (2010) Glass foams for environmental applications. J Non-Cryst Solids 365:2562–2568

    Article  Google Scholar 

  6. Rincón A, Marangoni M, Cetin S, Bernardo E (2016) Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications. J Chem Technol Biotechnol 91:1946–1961

    Article  Google Scholar 

  7. Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4:3617–3637

    Article  Google Scholar 

  8. Hinojosa-Reyes M (2011) Estudio de un sistema híbrido de degradación de etilbenceno: oxidación avanzada UV/TiO2-In acoplada a un biofiltro (Tesis de Maestría en Ciencias). Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, México

    Google Scholar 

  9. Różycka A, Pichòr W (2016) Effect of perlite waste addition on the properties of autoclaved aerated concrete. Constr Build Mater 120:65–71

    Article  Google Scholar 

  10. Pichór W, Janiec A (2009) Thermal stability of expanded perlite modified by mullite. Ceram Int 35:527–530

    Article  Google Scholar 

  11. Angelopoulos PM, Maliachova C, Papakonstantinou K, Taxiarchou M (2016) Structural and physical characteristics of fine perlite expanded with a novel method in a vertical electric furnace. Miner Process Extr M 125:71–80

    Article  Google Scholar 

  12. Chinnam RK, Bernardo E, Will J, Boccaccini AR (2015) Processing of porous glass ceramics from highly crystallisable industrial wastes. Adv Appl Ceram 114:S11–S16

    Article  Google Scholar 

  13. Broxtermann S, Taherishargh M, Belova IV, Murch GE, Fiedler T (2017) On the compressive behavior of high porosity expanded Perlite-Metal Syntactic Foam (P-MSF). J Alloy Compd 691:690–6907

    Article  Google Scholar 

  14. Tsaousi GM, Douni I, Panias D (2016) Characterization of the properties of perlite geopolymer pastes. Mater Constr 66:1–8

    Article  Google Scholar 

  15. https://nmgs.nmt.edu/publications/guidebooks/downloads/49/49_p0271_p0277.pdf

  16. Doğan M, Alkan M, Türkyilmaz A, Özdemir Y (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109:141–148

    Article  Google Scholar 

  17. Doğan M, Alkan M (2003) Adsorption kinetics of methyl violet onto perlite. Chemosphere 50:517–528

    Article  Google Scholar 

  18. Vijayakumar G, Dharmendirakumar M, Renganathan S, Sivanesan S, Baskar GP, Elango PK (2009) Removal of congo red from aqueous solutions by perlite. Clean 37:355–364

    Google Scholar 

  19. Roulia M, Vassiliadisb AA (2008) Sorption characterization of a cationic dye retained by clays and perlite. Micropor Mesopor Mat 116:732–740

    Article  Google Scholar 

  20. Mathialagan T, Viraraghavan T (2002) Adsorption of cadmium from aqueous solutions by perlite. J Hazard Mater 94:291–303

    Article  Google Scholar 

  21. Doğan M, Alkan M (2001) Adsorption of Copper (II) onto perlite. J Colloid Interf Sci 243:280–291

    Article  Google Scholar 

  22. San A, Tuzen M, Citak D, Soylak M (2007) Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. J Hazard Mater 148:387–394

    Article  Google Scholar 

  23. Chakir A, Bessiere J, Kacemi ELA, Marouf B (2002) A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. J Hazard Mater 95:29–46

    Article  Google Scholar 

  24. Talip Z, Eral M, Hiçsönmezb Ü (2009) Adsorption of thorium from aqueous solutions by perlite. J Environ Radioactiv 100:139–143

    Article  Google Scholar 

  25. Ghassabzadeh H, Mohadespour A, Torab-Mostaedi M, Zaheri P, Maragheh GM, Taheri H (2010) Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite. J Hazard Mater 177:950–955

    Article  Google Scholar 

  26. Ghassabzadeh H, Torab-Mostaedi M, Mohadespour A, Maragheh GM, Ahmadi JS, Zaheri P (2010) Characterizations of Co (II) and Pb (II) removal process from aqueous solutions using expanded perlite. Desalinaton 261:73–79

    Article  Google Scholar 

  27. Koumanova B, Peeva-Antova P (2002) Adsorption of p-chlorophenol from aqueous solutions on bentonite and perlite. J Hazard Mater 90:229–234

    Article  Google Scholar 

  28. Alkan M, Karadas M, Doğan M, Demirbaş Ö (2005) Adsorption of CTAB onto perlite samples from aqueous solutions. J Colloid Interf Sci 291:309–318

    Article  Google Scholar 

  29. Bastani D, Safekordi AA, Alihosseini A, Taghikhani V (2006) Study of oil sorption by expanded perlite at 298.15 K. Sep Purif Technol 52:295–300

    Article  Google Scholar 

  30. Swayampakula K, Boddu MV, Nadavala KS, Abburi K (2009) Competitive adsorption of Cu (II), Co (II) and Ni (II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent. J Hazard Mater 170:680–689

    Article  Google Scholar 

  31. Hasan S, Krishnaiah A, Ghosh KT, Viswanath SD (2006) Adsorption of divalent Cadmium (Cd(II)) from aqueous solutions onto chitosan-coated perlite beads. Ind Eng Chem Res 45:5066–5077

    Article  Google Scholar 

  32. Hasan S, Krishnaiah A, Ghosh KT, Viswanath SD, Boddu MV, Smith DE (2003) Adsorption of Chromium(VI) on chitosan-coated perlite. Sep Sci Technol 38:3775–3793

    Article  Google Scholar 

  33. Kumar NS, Suguna M, Subbaiah VM, Reddy SA, Kumar PN, Krishnaiah A (2010) Adsorption of phenolic compounds from aqueous solutions onto chitosan-coated perlite beads as biosorbent. Ind Eng Chem Res 49:9238–9247

    Article  Google Scholar 

  34. Vijaya Y, Subbaiah VM, Reddy SA, Krishnaiah A (2010) Equilibrium and kinetic studies of fluoride adsorption by chitosan coated perlite. Desalin Water Treat 20:272–280

    Article  Google Scholar 

  35. Mostafa GM, Chen Y, Jean J, Liu C, Lee Y (2011) Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite. J Hazard Mater 187:89–95

    Article  Google Scholar 

  36. Andrade-Martínez J, Ortega-Zarsoza G, Gómez-Cortés A, Rodríguez-González V (2015) N2O catalytic reduction over different porous SiO2 materials functionalized with copper. Powder Technol 274:305–312

    Article  Google Scholar 

  37. Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N (2007) Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl Catal B 74:53–62

    Article  Google Scholar 

  38. Faramarzpour M, Vossoughi M, Borghei M (2009) Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor. Chem Eng J 146:79–85

    Article  Google Scholar 

  39. Habibi MH, Zendehdel M (2011) Synthesis and characterization of titania nanoparticles on the surface of microporous perlite using sol-gel method: influence of titania precursor on characteristics. J Inorg Organomet Polym Mater 21:634–639

    Article  Google Scholar 

  40. Dlugosz M, Was J, Szczubialka K, Nowakowska M (2014) TiO2-coated EP as a floating photocatalysis for water purification. J Mater Chem A 19:6931–6938

    Article  Google Scholar 

  41. Długosz M, Żmudzki P, Kwiecień A, Szczubiałka A, Krzek J, Nowakowska M (2015) Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. J Hazard Mater 298:146–153

    Article  Google Scholar 

  42. Cherrak R, Hadjel M, Benderdouche N, Bellayer S, Traisnel M (2016) Treatment of recalcitrant organic pollutants in water by heterogeneous catalysis using a mixed material (TiO2-diatomite of algeria). Desalin Water Treat 57:17139–17148

    Google Scholar 

  43. Na Y, Song S, Park Y, Korean J (2005) Photocatalytic decolorization of rhodamine B by immobilized TiO2/UV in a fluidized-bed reactor. Korean J Chem Eng 22:196–200

    Article  Google Scholar 

  44. Khani A, Sohrabi MR (2013) Simultaneous synthesis-immobilization of nano ZnO on perlite for photocatalytic degradation of an azo dye in semi batch packed bed photoreactor. Pol J Chem Technol 14:69–76

    Google Scholar 

  45. Hinojosa RM, Arriaga S, Diaz TLA, Rodríguez GV (2013) Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chem Eng J 224:106–113

    Article  Google Scholar 

  46. Hinojosa RM, Arriaga S, Rodriguez GV (2012) Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2–In and a biofiltration process. J Hazard Mater 209-210:365–371

    Article  Google Scholar 

  47. Saucedo LSO, Arriaga S (2013) Photocatalytic degradation of hexane vapors in batch and continuous systems using impregnated ZnO nanoparticles. Chem Eng J 218:358–367

    Article  Google Scholar 

  48. Blaskov V, Stamolovo I, Georgiev V, Batakliev T, Eliyas A, Shipochka M (2015) Synthesis and catalytic activity of silver-coated perlite in the reaction of ozone decomposition. Ozone-Sci Eng 37:252–256

    Article  Google Scholar 

  49. Erli HJ, Rüger M, Ragoß C, Jahnen-Dechent W, Hollander AD, Paae O, Von Walter M (2006) The effect of surface modification of a porous TiO2/perlite composite on the ingrowth of bone tissue in vivo. Biomaterials 27:1270–1276

    Article  Google Scholar 

  50. Von Walter M, Herren C, Gensior TJ, Steffens MCG, Hermanns-Sachweh B, Jahnen-Dechent W, Rüger M, Erli JH (2008) Biomimetic modification of the TiO2/glass composite Ecopore with heparinized collagen and the osteoinductive factor BMP-2. Acta Biomater 4:997–1004

    Article  Google Scholar 

  51. Lee WS, Obregón AS, Rodríguez GV (2011) Photocatalytic coatings of silver–TiO2 nanocomposites on foamed waste-glass prepared by sonochemical process. J Photochem Photobiol A 221:71–76

    Article  Google Scholar 

  52. Song JJ, Cho SH, Lee SW, Kim TH, Hayashi Y (2007) Removing algae with Pt-doped TiO2 coating on foamed glass. Mater Sci Forum 544-545:135–138

    Article  Google Scholar 

  53. Song JJ, Cho HS, Lee WS, Chen H (2008) Removing algae with CoO2-doped TiO2 coatings on foamed glass. J Ceram Process Res 9:486–489

    Google Scholar 

  54. Obregón AS, Rodríguez GV, Zaldívar CAA, Lee WS (2011) Sonochemical deposition of silver–TiO2 nanocomposites onto foamed waste-glass: evaluation of Eosin Y decomposition under sunlight irradiation. Catal Today 166:166–171

    Article  Google Scholar 

  55. Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705

    Article  Google Scholar 

  56. Li Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res 40:1119–1126

    Article  Google Scholar 

  57. Fernández A, Lassaletta G, Jiménez VM, Justo A, González-Elipe AR, Hermann J-M, Tahiri H, Ait-Ichou Y (1995) Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl Catal B 7:49–63

    Article  Google Scholar 

  58. Yu JC, Ho W, Lin J, Yip H, Wong PK (2003) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Envrion Sci Technol 37:2296–2301

    Article  Google Scholar 

  59. Teekateerawej S, Nishino J, Nosaka Y (2005) Photocatalytic microreactor study using TiO2-coated porous ceramics. J Appl Electrochem 35:693–697

    Article  Google Scholar 

  60. Yaghoubi H, Taghavinia N, Alamdari EK (2010) Self cleaning TiO2 coating on polycarbonate: surface treatment, photocatalytic and nanomechanical properties. Surf Coat Technol 204:1562–1568

    Article  Google Scholar 

  61. Peill NL, Hoffmann MR (1995) Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol. Environ Sci Technol Lett 29:2974–2981

    Article  Google Scholar 

  62. Hassan MM, Dylla H, Mohammad LN, Rupnow T (2010) Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Constr Build Mat 24:1456–1461

    Article  Google Scholar 

  63. Lee JA, Krogman KC, Ma M, Hill RM, Hammond PT, Rutledge GC (2009) Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Adv Mater 21:1252–1256

    Article  Google Scholar 

  64. Park H, Choi W (2005) Photocatalytic reactivities of nafion-coated TiO2 for the degradation of charged organic compounds under UV or visible light. J Phys Chem B 109:11667–11674

    Article  Google Scholar 

  65. Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, Kubota Y, Fujishima A (2000) Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: a preclinical work. J Biomed Mater Res A 58:97–101

    Article  Google Scholar 

  66. Tennakone K, Tilakaratne CTK, Kottegoda IRM (1995) Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. J Photochem Photobiol A 87:177–179

    Article  Google Scholar 

  67. Kim H, Lee S, Han Y, Park J (2006) Preparation of dip-coated TiO2 photocatalyst on ceramic foam pellets. J Mater Sci 41:6150–6153

    Article  Google Scholar 

  68. Shibata T, Hamada N, Kimoto K, Sawada T, Sawada T, Kumada H, Umemoto T, Toyoda M (2007) Antifungal effect of acrylic resin containing apatite-coated TiO2 photocatalyst. Dent Mater Sci 26:437–444

    Article  Google Scholar 

  69. Agarwal S, Wendorff JH, Greiner A (2010) Chemistry on electrospun polymeric nanofibers: merely routine chemistry or a real challenge. Macromol Rapid Commun 31:1317–1331

    Article  Google Scholar 

  70. Jafarzadeh NK, Sarifnia S, Hosseini SN, Rahimpour F (2011) Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules. Korean J Chem Eng 28:531–538

    Article  Google Scholar 

  71. Hasan S, Ghosh TK, Prelas MA, Viswanath DS, Boddu VM (2007) Adsorption of uranium on a novel bioadsorbent-chitosan-coated perlite. Nuclear Technol 159:59–71

    Article  Google Scholar 

  72. Shavisi Y, Sharifnia S, Hosseini SN, Khadivi MA (2013) Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. J Ind Eng Chem 20:278–283

    Article  Google Scholar 

  73. Joolaei H, Vossoughi M, Abadi ARM, Heravi A (2017) Removal of humic acid from aqueous solution using photocatalytic reaction on perlite granules covered by nano TiO2 particles. J Mol Liq 242:357–363

    Article  Google Scholar 

  74. https://www.google.com/patents/US3382170

  75. Hejazi P, Borenberg F, Isik G, Rupar-Gadd K, Strandmark G, Shojaosadati SA, Welander U (2010) Treatment of α-pinenes-contaminated air using silicone oil-coated perlite biofilter. Environ Prog Sustain Energy 29:313–318

    Article  Google Scholar 

  76. Verbinnen B, Block C, Vandecasteele C (2016) Adsorption of oxyanions from industrial wastewater using perlite-supported magnetite. Water Environ Res 88:408–414

    Article  Google Scholar 

  77. https://www.google.com/patents/US3855152

  78. Wang X, Wang W, Wang X, Zhang J, Gu Z, Zhou L, Zhao J (2015) Enhanced visible light photocatalytic activity of a floating photocatalyst based on B-N-codoped TiO2 grafted on expanded perlite. RSC Adv 5:41385–41392

    Article  Google Scholar 

  79. Wang X, Wang W, Wang X, Zhang J, Zhao J, Gu Z, Zhou L (2015) Synthesis, structural characterization and evaluation of floating B-N codoped TiO2/expanded perlite composites with enhanced visible light photoactivity. Appl Surf Sci 349:264–271

    Article  Google Scholar 

  80. Domínguez MI, Sánchez M, Centeno MA, Montes M, Odriozola JA (2006) CO oxidation over gold-supported catalysts-coated ceramic foams prepared from stainless steel wastes. Appl Catal A 302:96–103

    Article  Google Scholar 

  81. Domínguez MI, Sánchez M, Centeno MA, Montes M, Odriozola JA (2007) 2-propanol oxidation over gold supported catalysts coated ceramic foams prepared from stainless steel wastes. J Mol Catal A 277:145–154

    Article  Google Scholar 

  82. Xu Q, Zeng J, Li X, Xu J, Liu X (2016) 3D nano-macroporous structured TiO2-foam glass as an efficient photocatalyst for organic pollutant treatment. RSC Adv 6:51888–51893

    Article  Google Scholar 

  83. Ishikawa S, Kobzi B, Sunakawa K, Nemeth S, Lengyel A, Kuzmann E, Homonnay Z, Nishida T, Kubuki S (2017) Visible-light activated photocatalytic effect of glass and glass ceramic prepared by recycling waste slag with hematite. Pure Appl Chem 89(4):535–544. https://doi.org/10.1515/pac-2016-1018

    Article  Google Scholar 

  84. Karches M, Morstein M, von Rohr PR, Pozzo RL, Giombi JL, Baltanás MA (2002) Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catal Today 72:267–279

    Article  Google Scholar 

  85. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351:260–263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Rodríguez-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rodríguez-González, V., Hinojosa-Reyes, M. (2018). Waste-Porous-Based Materials as Supports of TiO2 Photocatalytic Coatings for Environmental Applications. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_163-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_163-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics