Skip to main content

Caudata Locomotion

  • Living reference work entry
  • First Online:
  • 135 Accesses

Synonyms

Salamander or newt locomotion

Definition

Movement used by salamanders to traverse their environment.

The Caudata are amphibians that generally show the basal tetrapod body plan. They are lizard-like in appearance with slender bodies and short limbs (Girling 2013). They tend to have four toes on the forelimb and five on the hindlimb. Some fully aquatic species, like sirens and amphiumas, have reduced or absent hindlimbs. Like all amphibians, the Caudata have a distinct larval and adult stage. They have permeable skin that usually makes them reliant on habitats in or near water or other cool, damp places. Some salamander species are fully aquatic throughout their lives, while others take to the water intermittently, and others are entirely terrestrial as adults (Duellman and Trueb 1994; Stebbins and Cohen 1997).

Major Locomotor Modes

Caudata locomotion can be broken down broadly into terrestrial and aquatic movement (Duellman and Trueb 1994; Karakasiliotis et al. 2016; Stebbins...

This is a preview of subscription content, log in via an institution.

References

  • Andersson, O., Forssberg, H., Grillner, S., & Wallen, P. (1981). Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. Canadian Journal of Physiology and Pharmacology, 59(7), 713–726.

    Article  Google Scholar 

  • Ashley-Ross, M. (1994). Hindlimb kinematics during terrestrial locomotion in a salamander (Dicamptodon tenebrosus). Journal of Experimental Biology, 193(1), 255–283.

    PubMed  Google Scholar 

  • Ashley-Ross, M. A., Lundin, R., & Johnson, K. L. (2009). Kinematics of level terrestrial and underwater walking in the California newt, Taricha torosa. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311A(4), 240–257. https://doi.org/10.1002/jez.522.

    Article  Google Scholar 

  • Cartmill, M., Lemelin, P., & Schmitt, D. (2002). Support polygons and symmetricalgaits in mammals. Zoological Journal of the Linnean Society, 136(3), 401–420. https://doi.org/10.1046/j.1096-3642.2002.00038.x.

    Article  Google Scholar 

  • Duellman, W. E., & Trueb, L. (1994). Biology of amphibians. JHU Press.

    Google Scholar 

  • Frolich, L. M., & Biewener, A. A. (1992). Kinematic and Electromyographic analysis of the functional role of the body axis during terrestrial and aquatic locomotion in the salamander Ambystoma tigrinum. Journal of Experimental Biology, 162(1), 107–130.

    Google Scholar 

  • Gillis, G. (1997). Anguilliform locomotion in an elongate salamander (Siren intermedia): Effects of speed on axial undulatory movements. Journal of Experimental Biology, 200(4), 767–784.

    PubMed  Google Scholar 

  • Girling, S. J. (2013). Basic reptile and amphibian anatomy and physiology. In Veterinary nursing of exotic pets (pp. 245–265). Wiley. https://doi.org/10.1002/9781118782941.ch17.

  • Golubitsky, M., Stewart, I., Pietro-Luciano, B., & Collins, J. J. (1999). Symmetry in locomotor central pattern generators and animal gaits. Nature, 401(6755), 731–731. https://doi.org/10.1038/44416.

    Article  Google Scholar 

  • Granatosky, M. C. (2018). Quadrupedal. In J. Vonk & T. Shackelford (Eds.), Encyclopedia of animal cognition and behavior (pp. 1–6). Springer International Publishing. https://doi.org/10.1007/978-3-319-47829-6_1442-1.

  • Granatosky, M. C., Bryce, C. M., Hanna, J., Fitzsimons, A., Laird, M. F., Stilson, K., Wall, C. E., & Ross, C. F. (2018). Inter-stride variability triggers gait transitions in mammals and birds. Proceedings of the Royal Society B, 285. https://doi.org/10.1098/rspb.2018.1766.

  • Granatosky, M. C., McElroy, E. J., Lemelin, P., Reilly, S. M., Nyakatura, J. A., Andrada, E., Kilbourne, B. M., Allen, V. R., Butcher, M. T., Blob, R. W., & Ross, C. F. (2020). Variation in limb loading magnitude and timing in tetrapods. The Journal of Experimental Biology, 223(Pt 2). https://doi.org/10.1242/jeb.201525.

  • Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 55(2), 247–304.

    Article  Google Scholar 

  • Grillner, S., & Zangger, P. (1975). How detailed is the central pattern generation for locomotion? Brain Research, 88(2), 367–371.

    Article  Google Scholar 

  • Guertin, P. A. (2009). The mammalian central pattern generator for locomotion. Brain Research Reviews, 62(1), 45–56. https://doi.org/10.1016/j.brainresrev.2009.08.002.

    Article  PubMed  Google Scholar 

  • Harischandra, N., Knuesel, J., Kozlov, A., Bicanski, A., Cabelguen, J.-M., Ijspeert, A. J., & Ekeberg, Ö. (2011). Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: A simulation study. Frontiers in Neurorobotics, 5, 3.

    Article  Google Scholar 

  • Hoff, K. V. S., Huq, N., King, V. A., & Wassersug, R. J. (1989). The kinematics of larval salamander swimming (Ambystomatidae: Caudata). Canadian Journal of Zoology, 67(11), 2756–2761. https://doi.org/10.1139/z89-391.

    Article  Google Scholar 

  • Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks : The Official Journal of the International Neural Network Society, 21(4), 642–653. https://doi.org/10.1016/j.neunet.2008.03.014.

    Article  Google Scholar 

  • Ijspeert, A. J., & Cabelguen, J.-M. (2006). Gait transition from swimming to walking: Investigation of salamander locomotion control using nonlinear oscillators. In H. Kimura, K. Tsuchiya, A. Ishiguro, & H. Witte (Eds.), Adaptive motion of animals and machines (pp. 177–188). Springer. https://doi.org/10.1007/4-431-31381-8_16.

  • Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J.-M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315(5817), 1416–1420. https://doi.org/10.1126/science.1138353.

    Article  PubMed  Google Scholar 

  • Karakasiliotis, K. (2013). Legged locomotion with spinal undulations. EPFL.

    Google Scholar 

  • Karakasiliotis, K., Schilling, N., Cabelguen, J.-M., & Ijspeert, A. J. (2013). Where are we in understanding salamander locomotion: Biological and robotic perspectives on kinematics. Biological Cybernetics, 107(5), 529–544. https://doi.org/10.1007/s00422-012-0540-4.

    Article  PubMed  Google Scholar 

  • Karakasiliotis, K., Thandiackal, R., Melo, K., Horvat, T., Mahabadi, N. K., Tsitkov, S., Cabelguen, J. M., & Ijspeert, A. J. (2016). From cineradiography to biorobots: An approach for designing robots to emulate and study animal locomotion. Journal of the Royal Society Interface, 13(119), 20151089. https://doi.org/10.1098/rsif.2015.1089.

    Article  PubMed Central  Google Scholar 

  • Kiehn, O., & Butt, S. J. B. (2003). Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Progress in Neurobiology, 70(4), 347–361. https://doi.org/10.1016/S0301-0082(03)00091-1.

    Article  PubMed  Google Scholar 

  • Knüsel, J., Bicanski, A., Ryczko, D., Cabelguen, J.-M., & Ijspeert, A. J. (2013). A Salamander’s flexible spinal network for locomotion, modeled at two levels of abstraction. Integrative and Comparative Biology, 53(2), 269–282. https://doi.org/10.1093/icb/ict067.

    Article  PubMed  Google Scholar 

  • Nyakatura, J. A., Melo, K., Horvat, T., Karakasiliotis, K., Allen, V. R., Andikfar, A., Andrada, E., Arnold, P., Lauströer, J., Hutchinson, J. R., Fischer, M. S., & Ijspeert, A. J. (2019). Reverse-engineering the locomotion of a stem amniote. Nature, 565(7739), 351. https://doi.org/10.1038/s41586-018-0851-2.

    Article  PubMed  Google Scholar 

  • Reilly, S. M., McElroy, E. J., Odum, R. A., & Hornyak, V. A. (2006). Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion. Proceedings of the Royal Society of London B: Biological Sciences, 273(1593), 1563–1568. https://doi.org/10.1098/rspb.2006.3489.

    Article  Google Scholar 

  • Ross, C. F., Blob, R. W., Carrier, D. R., Daley, M. A., Deban, S. M., Demes, B., Gripper, J. L., Iriarte-Diaz, J., Kilbourne, B. M., Landberg, T., Polk, J. D., Schilling, N., & Vanhooydonck, B. (2013). The evolution of locomotor rhythmicity in Tetrapods. Evolution, 67(4), 1209–1217. https://doi.org/10.1111/evo.12015.

    Article  PubMed  Google Scholar 

  • Stebbins, R. C., & Cohen, N. W. (1997). A natural history of amphibians. Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Granatosky .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sawiec, A.B., Gibbons, D.E., Gagliano, P., Granatosky, M.C. (2020). Caudata Locomotion. In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_1005-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47829-6_1005-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47829-6

  • Online ISBN: 978-3-319-47829-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics