Skip to main content

Neuroendocrinology of Energy Balance

  • Reference work entry
  • First Online:
Book cover Obesity

Part of the book series: Endocrinology ((ENDOCR))

  • 1751 Accesses

Abstract

In the past decades, the spiraling obesity epidemic has renewed the interest of basic scientists in the control of hunger and satiety, food intake and energy expenditure, and body weight regulation by the central nervous system. The discovery of the adipose-derived satiety hormone, leptin, in 1994 greatly advanced the neuroscience of obesity by enabling detection and characterization of the – largely hypothalamic – neurocircuits that underpin feeding behavior and energy balance regulation. A number of circulating factors that affect the energy balance at the central level have subsequently been discovered in the adipose organ, the gastrointestinal tract, and the endocrine pancreas or their mechanisms of action have been characterized. Although several major pieces of the picture are still missing, the available data suggest that energy balance homeostasis is achieved at the central level by hypothalamic and brainstem neurocircuits which integrate metabolic stimuli with cognitive, hedonic, and emotional cues, regulating energy use and storage and body weight homeostasis through behavioral, autonomic, and endocrine responses. These extremely complex and closely integrated neurocircuits are mainly peptidergic and give rise to a highly redundant system. They operate continuously in response to stimulatory or inhibitory hormonal and metabolic inputs coming from the periphery of the body through the circulation. Such crosstalk between “center” and “periphery” is currently a major area of energy balance research. Its elucidation is expected to provide in the near future novel druggable targets for the effective treatment of obesity and related diseases in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR, Ghatei MA, Bloom SR. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044:127–31.

    Article  CAS  PubMed  Google Scholar 

  • Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382:250–2.

    Article  CAS  PubMed  Google Scholar 

  • Al Massadi O, López M, Tschöp M, Diéguez C, Nogueiras R. Current understanding of the hypothalamic ghrelin pathways inducing appetite and adiposity. Trends Neurosci. 2017;40:167–80.

    Article  PubMed  CAS  Google Scholar 

  • Anand BK, Brobeck JR. Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med. 1951;77:323–4.

    Article  CAS  PubMed  Google Scholar 

  • Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci. 2011;14:351–5.

    Article  CAS  PubMed  Google Scholar 

  • Bagdade JD, Bierman EL, Porte D Jr. The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J Clin Invest. 1967;46:1549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballaz S. The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning. Rev Neurosci. 2017;28:573–85.

    Article  CAS  PubMed  Google Scholar 

  • Banks WA. Is obesity a disease of the blood-brain barrier? Physiological, pathological and evolutionary considerations. Curr Pharm Des. 2003;9:801–9.

    Article  CAS  PubMed  Google Scholar 

  • Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.

    Article  CAS  PubMed  Google Scholar 

  • Baura GD, Foster DM, Porte D Jr, Kahn SE, Bergman RN, Cobelli C, Schwartz MW. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest. 1993;92:1824–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becskei C, Riediger T, Zünd D, Wookey P, Lutz TA. Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res. 2004;1030:221–33.

    Article  CAS  PubMed  Google Scholar 

  • Beglinger C, Degen L, Matzinger D, D’Amato M, Drewe J. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Phys Regul Integr Comp Phys. 2001;280:R1149–54.

    CAS  Google Scholar 

  • Burger KS, Berner LA. A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior. Physiol Behav. 2014;136:121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelikani PK, Haver AC, Reidelberger RD. Intravenous infusion of peptide YY(3-36) potently inhibits food intake in rats. Endocrinology. 2005;146:879–88.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84:491–5.

    Article  CAS  PubMed  Google Scholar 

  • Coleman DL. Obese and diabetes. Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia. 1978;14:141–8.

    Article  CAS  PubMed  Google Scholar 

  • Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.

    Article  CAS  PubMed  Google Scholar 

  • Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A. 1987;84:8628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corp ES, Curcio M, Gibbs J, Smith GP. The effect of centrally administered CCK-receptor antagonists on food intake in rats. Physiol Behav. 1997;61:823–7.

    Article  CAS  PubMed  Google Scholar 

  • Dodd GT, Tiganis T. Insulin action in the brain: roles in energy and glucose homeostasis. J Neuroendocrinol. 2017; 29(10):1–13.

    Article  CAS  Google Scholar 

  • Ekblad E, Sundler F. Distribution of pancreatic polypeptide and peptide YY. Peptides. 2002;23:251–61.

    Article  CAS  PubMed  Google Scholar 

  • Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol. 1998;395:535–47.

    Article  CAS  PubMed  Google Scholar 

  • Elmquist JK, Elias CF, Saper CB. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron. 1999;22:221–32.

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci. 2004;4:335–6.

    Article  CAS  Google Scholar 

  • Farooqi IS, Jebb S, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O’Rahilly S. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341:879–84.

    Article  CAS  PubMed  Google Scholar 

  • Fei H, Okano HJ, Li C, Lee GH, Zhao C, Darnell R, Friedman JM. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci U S A. 1997;94:7001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol. 1973;84:488–95.

    Article  CAS  PubMed  Google Scholar 

  • Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: pharmacology, physiology, and clinical potential. Pharmacol Rev. 2015;67:564–600.

    Article  CAS  PubMed  Google Scholar 

  • Hervey GR. The effects of lesions in the hypothalamus in parabiotic rats. J Physiol. 1959;145:336–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78:149–72.

    Article  Google Scholar 

  • Hinney A, Schmidt A, Nottebom K, Heibült O, Becker I, Ziegler A, Gerber G, Sina M, Görg T, Mayer H, Siegfried W, Fichter M, Remschmidt H, Hebebrand J. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab. 1999;84:1483–6.

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki Y, Yada T. Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: mechanism and physiological role. Neuropeptides. 2012;46:291–7.

    Article  CAS  PubMed  Google Scholar 

  • Kakei M, Yada T, Nakagawa A, Nakabayashi H. Glucagon-like peptide-1 evokes action potentials and increases cytosolic Ca2+ in rat nodose ganglion neurons. Auton Neurosci. 2002;102:39–44.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy GC. The hypothalamic control of food intake in rats. Proc R Soc Lond B Biol Sci. 1950;137:535–49.

    Article  CAS  PubMed  Google Scholar 

  • Kim JD, Leyva S, Diano S. Hormonal regulation of the hypothalamic melanocortin system. Front Physiol. 2014;5:480.

    PubMed  PubMed Central  Google Scholar 

  • King BM. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav. 2006;87:221–44.

    Article  CAS  PubMed  Google Scholar 

  • Kissileff HR, Pi-Sunyer FX, Thornton J, Smith GP. C-terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr. 1981;34:154–60.

    Article  CAS  PubMed  Google Scholar 

  • Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, Niijima A, Furuya M, Inomata N, Osuye K, Nakazato M. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology. 2005;146:2369–75.

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  CAS  PubMed  Google Scholar 

  • Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest. 2011;121:1424–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19:155–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee PC, Dixon JB. Food for thought: reward mechanisms and hedonic overeating in obesity. Curr Obes Rep. 2017.

    Google Scholar 

  • Lo CM, Samuelson LC, Chambers JB, King A, Heiman J, Jandacek RJ, Sakai RR, Benoit SC, Raybould HE, Woods SC, Tso P. Characterization of mice lacking the gene for cholecystokinin. Am J Phys Regul Integr Comp Phys. 2008;294:R803–10.

    CAS  Google Scholar 

  • Lutz TA, Geary N, Szabady MM, Del Prete E, Scharrer E. Amylin decreases meal size in rats. Physiol Behav. 1995;58:1197–202.

    Article  CAS  PubMed  Google Scholar 

  • Lutz TA, Mollet A, Rushing PA, Riediger T, Scharrer E. The anorectic effect of a chronic peripheral infusion of amylin is abolished in area postrema/nucleus of the solitary tract (AP/NTS) lesioned rats. Int J Obes Relat Metab Disord. 2001;25:1005–11.

    Article  CAS  PubMed  Google Scholar 

  • Mayer J. Regulation of energy intake and the body weight. The glucostatic and lipostatic hypothesis. Ann N Y Acad Sci. 1955;63:14–42.

    Article  Google Scholar 

  • McFarlane MR, Brown MS, Goldstein JL, Zhao TJ. Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab. 2014;20:54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 1996;387:113–6.

    Article  CAS  PubMed  Google Scholar 

  • Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol. 1999;403:261–80.

    Article  CAS  PubMed  Google Scholar 

  • Mollet A, Gilg S, Riediger T, Lutz TA. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol Behav. 2004;81:149–55.

    Article  CAS  PubMed  Google Scholar 

  • Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci. 2014;15:367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism. 2015;64:13–23.

    Article  CAS  PubMed  Google Scholar 

  • Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194–8.

    Article  CAS  PubMed  Google Scholar 

  • Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9:35–51.

    Article  CAS  PubMed  Google Scholar 

  • Park H-K, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine functions and metabolism. Metabolism. 2015;64:24–34.

    Article  CAS  PubMed  Google Scholar 

  • Perry B, Wang Y. Appetite regulation and weight control: the role of gut hormones. Nutr Diabetes. 2012;2:e26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potes CS, Turek VF, Cole RL, Vu C, Roland BL, Roth JD, Riediger T, Lutz TA. Noradrenergic neurons of the area postrema mediate amylin’s hypophagic action. Am J Phys Regul Integr Comp Phys. 2010;299:R623–31.

    CAS  Google Scholar 

  • Punjabi M, Arnold M, Rüttimann E, Graber M, Geary N, Pacheco-López G, Langhans W. Circulating glucagon-like peptide-1 (GLP-1) inhibits eating in male rats by acting in the hindbrain and without inducing avoidance. Endocrinology. 2014;155:1690–9.

    Article  PubMed  CAS  Google Scholar 

  • Reidelberger RD, Haver AC, Arnelo U, Smith DD, Schaffert CS, Permert J. Amylin receptor blockade stimulates food intake in rats. Am J Phys Regul Integr Comp Phys. 2004;287:R568–74.

    CAS  Google Scholar 

  • Sainsbury A, Shi YC, Zhang L, Aljanova A, Lin Z, Nguyen AD, Herzog H, Lin S. Y4 receptors and pancreatic polypeptide regulate food intake via hypothalamic orexin and brain-derived neurotropic factor dependent pathways. Neuropeptides. 2010;44:261–8.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of targets of leptin action in rat hypothalamus. J Clin Invest. 1996;98:1101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellayah D, Cagampang FR, Cox RD. On the evolutionary origins of obesity: a new hypothesis. Endocrinology. 2014;155:1573–88.

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Greenberg ME. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990;4:477–85.

    Article  CAS  PubMed  Google Scholar 

  • Smith GP, Epstein AN. Increased feeding in response to decreased glucose utilization in rat and monkey. Am J Phys. 1969;217:1083–7.

    CAS  Google Scholar 

  • Spreckley E, Murphy KG. The L-cell in nutritional sensing and the regulation of appetite. Front Nutr. 2015;2:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stellar E. The physiology of motivation. Psychol Rev. 1954;61:5–22.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the hypothalamus in appetite regulation. Endocr J. 2010;57:359–72.

    Article  CAS  PubMed  Google Scholar 

  • Talsania T, Anini Y, Siu S, Drucker DJ, Brubaker PL. Peripheral exendin-4 and peptide YY(3-36) synergistically reduce food intake through different mechanisms in mice. Endocrinology. 2005;146:3748–56.

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.

    Article  CAS  PubMed  Google Scholar 

  • Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  PubMed  Google Scholar 

  • Villanueva EC, Mayers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes. 2008;32(Suppl. 7):S8–S12.

    Article  CAS  Google Scholar 

  • Vilsbøll T, Holst JJ. Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia. 2004;47:357–66.

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Liu C, Uchida A, Chuang JC, Walker A, Liu T, Osborne-Lawrence S, Mason BL, Mosher C, Berglund ED, Elmquist JK, Zigman JM. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol Metab. 2013;3:64–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waterson MJ, Horvath TL. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 2015;22:962–70.

    Article  CAS  PubMed  Google Scholar 

  • Woods SC, Lotter EC, McKay LD, Porte D Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282:503–5.

    Article  CAS  PubMed  Google Scholar 

  • Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86:5992.

    Article  CAS  PubMed  Google Scholar 

  • Young AA. Brainstem sensing of meal-related signals in energy homeostasis. Neuropharmacology. 2012;63:31–45.

    Article  CAS  PubMed  Google Scholar 

  • Zhan C, Zhou J, Feng Q, Zhang JE, Lin S, Bao J, Wu P, Luo M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci. 2013;33:3624–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    Article  CAS  PubMed  Google Scholar 

  • Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494:528–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipf WB, O’Dorisio TM, Cataland S, Sotos J. Blunted pancreatic polypeptide responses in children with obesity of Prader-Willi syndrome. J Clin Endocrinol Metab. 1981;52:1264–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Giordano or Enzo Nisoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Giordano, A., Nisoli, E. (2019). Neuroendocrinology of Energy Balance. In: Sbraccia, P., Finer, N. (eds) Obesity. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-46933-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46933-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46932-4

  • Online ISBN: 978-3-319-46933-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics